Search results

1 – 10 of 469
Article
Publication date: 6 June 2024

Özge H. Namlı, Seda Yanık, Aslan Erdoğan and Anke Schmeink

Coronary artery disease is one of the most common cardiovascular disorders in the world, and it can be deadly. Traditional diagnostic approaches are based on angiography, which is…

49

Abstract

Purpose

Coronary artery disease is one of the most common cardiovascular disorders in the world, and it can be deadly. Traditional diagnostic approaches are based on angiography, which is an interventional procedure having side effects such as contrast nephropathy or radio exposure as well as significant expenses. The purpose of this paper is to propose a novel artificial intelligence (AI) approach for the diagnosis of coronary artery disease as an effective alternative to traditional diagnostic methods.

Design/methodology/approach

In this study, a novel ensemble AI approach based on optimization and classification is proposed. The proposed ensemble structure consists of three stages: feature selection, classification and combining. In the first stage, important features for each classification method are identified using the binary particle swarm optimization algorithm (BPSO). In the second stage, individual classification methods are used. In the final stage, the prediction results obtained from the individual methods are combined in an optimized way using the particle swarm optimization (PSO) algorithm to achieve better predictions.

Findings

The proposed method has been tested using an up-to-date real dataset collected at Basaksehir Çam and Sakura City Hospital. The data of disease prediction are unbalanced. Hence, the proposed ensemble approach improves majorly the F-measure and ROC area which are more prominent measures in case of unbalanced classification. The comparison shows that the proposed approach improves the F-measure and ROC area results of the individual classification methods around 14.5% in average and diagnoses with an accuracy rate of 96%.

Originality/value

This study presents a low-cost and low-risk AI-based approach for diagnosing heart disease compared to traditional diagnostic methods. Most of the existing research studies focus on base classification methods. In this study, we mainly investigate an effective ensemble method that uses optimization approaches for feature selection and combining stages for the medical diagnostic domain. Furthermore, the approaches in the literature are commonly tested on open-access dataset in heart disease diagnoses, whereas we apply our approach on a real and up-to-date dataset.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 17 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 19 April 2024

Jitendra Gaur, Kumkum Bharti and Rahul Bajaj

Allocation of the marketing budget has become increasingly challenging due to the diverse channel exposure to customers. This study aims to enhance global marketing knowledge by…

Abstract

Purpose

Allocation of the marketing budget has become increasingly challenging due to the diverse channel exposure to customers. This study aims to enhance global marketing knowledge by introducing an ensemble attribution model to optimize marketing budget allocation for online marketing channels. As empirical research, this study demonstrates the supremacy of the ensemble model over standalone models.

Design/methodology/approach

The transactional data set for car insurance from an Indian insurance aggregator is used in this empirical study. The data set contains information from more than three million platform visitors. A robust ensemble model is created by combining results from two probabilistic models, namely, the Markov chain model and the Shapley value. These results are compared and validated with heuristic models. Also, the performances of online marketing channels and attribution models are evaluated based on the devices used (i.e. desktop vs mobile).

Findings

Channel importance charts for desktop and mobile devices are analyzed to understand the top contributing online marketing channels. Customer relationship management-emailers and Google cost per click a paid advertising is identified as the top two marketing channels for desktop and mobile channels. The research reveals that ensemble model accuracy is better than the standalone model, that is, the Markov chain model and the Shapley value.

Originality/value

To the best of the authors’ knowledge, the current research is the first of its kind to introduce ensemble modeling for solving attribution problems in online marketing. A comparison with heuristic models using different devices (desktop and mobile) offers insights into the results with heuristic models.

Details

Global Knowledge, Memory and Communication, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9342

Keywords

Article
Publication date: 30 March 2023

Nader Asadi Ejgerdi and Mehrdad Kazerooni

With the growth of organizations and businesses, customer acquisition and retention processes have become more complex in the long run. That is why customer lifetime value (CLV…

Abstract

Purpose

With the growth of organizations and businesses, customer acquisition and retention processes have become more complex in the long run. That is why customer lifetime value (CLV) has become crucial to sales managers. Predicting the CLV is a strategic weapon and competitive advantage in increasing profitability and identifying customers with more splendid profitability and is one of the essential key performance indicators (KPI) used in customer segmentation. Thus, this paper proposes a stacked ensemble learning method, a combination of multiple machine learning methods, for CLV prediction.

Design/methodology/approach

In order to utilize customers’ behavioral features for predicting the value of each customer’s CLV, the data of a textile sales company was used as a case study. The proposed stacked ensemble learning method is compared with several popular predictive methods named deep neural networks, bagging support vector regression, light gradient boosting machine, random forest and extreme gradient boosting.

Findings

Empirical results indicate that the regression performance of the stacked ensemble learning method outperformed other methods in terms of normalized rooted mean squared error, normalized mean absolute error and coefficient of determination, at 0.248, 0.364 and 0.848, respectively. In addition, the prediction capability of the proposed method improved significantly after optimizing its hyperparameters.

Originality/value

This paper proposes a stacked ensemble learning method as a new method for accurate CLV prediction. The results and comparisons support the robustness and efficiency of the proposed method for CLV prediction.

Details

Kybernetes, vol. 53 no. 7
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 26 September 2022

Christian Nnaemeka Egwim, Hafiz Alaka, Oluwapelumi Oluwaseun Egunjobi, Alvaro Gomes and Iosif Mporas

This study aims to compare and evaluate the application of commonly used machine learning (ML) algorithms used to develop models for assessing energy efficiency of buildings.

Abstract

Purpose

This study aims to compare and evaluate the application of commonly used machine learning (ML) algorithms used to develop models for assessing energy efficiency of buildings.

Design/methodology/approach

This study foremostly combined building energy efficiency ratings from several data sources and used them to create predictive models using a variety of ML methods. Secondly, to test the hypothesis of ensemble techniques, this study designed a hybrid stacking ensemble approach based on the best performing bagging and boosting ensemble methods generated from its predictive analytics.

Findings

Based on performance evaluation metrics scores, the extra trees model was shown to be the best predictive model. More importantly, this study demonstrated that the cumulative result of ensemble ML algorithms is usually always better in terms of predicted accuracy than a single method. Finally, it was discovered that stacking is a superior ensemble approach for analysing building energy efficiency than bagging and boosting.

Research limitations/implications

While the proposed contemporary method of analysis is assumed to be applicable in assessing energy efficiency of buildings within the sector, the unique data transformation used in this study may not, as typical of any data driven model, be transferable to the data from other regions other than the UK.

Practical implications

This study aids in the initial selection of appropriate and high-performing ML algorithms for future analysis. This study also assists building managers, residents, government agencies and other stakeholders in better understanding contributing factors and making better decisions about building energy performance. Furthermore, this study will assist the general public in proactively identifying buildings with high energy demands, potentially lowering energy costs by promoting avoidance behaviour and assisting government agencies in making informed decisions about energy tariffs when this novel model is integrated into an energy monitoring system.

Originality/value

This study fills a gap in the lack of a reason for selecting appropriate ML algorithms for assessing building energy efficiency. More importantly, this study demonstrated that the cumulative result of ensemble ML algorithms is usually always better in terms of predicted accuracy than a single method.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 4
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 13 August 2020

Mariam AlKandari and Imtiaz Ahmad

Solar power forecasting will have a significant impact on the future of large-scale renewable energy plants. Predicting photovoltaic power generation depends heavily on climate…

12377

Abstract

Solar power forecasting will have a significant impact on the future of large-scale renewable energy plants. Predicting photovoltaic power generation depends heavily on climate conditions, which fluctuate over time. In this research, we propose a hybrid model that combines machine-learning methods with Theta statistical method for more accurate prediction of future solar power generation from renewable energy plants. The machine learning models include long short-term memory (LSTM), gate recurrent unit (GRU), AutoEncoder LSTM (Auto-LSTM) and a newly proposed Auto-GRU. To enhance the accuracy of the proposed Machine learning and Statistical Hybrid Model (MLSHM), we employ two diversity techniques, i.e. structural diversity and data diversity. To combine the prediction of the ensemble members in the proposed MLSHM, we exploit four combining methods: simple averaging approach, weighted averaging using linear approach and using non-linear approach, and combination through variance using inverse approach. The proposed MLSHM scheme was validated on two real-time series datasets, that sre Shagaya in Kuwait and Cocoa in the USA. The experiments show that the proposed MLSHM, using all the combination methods, achieved higher accuracy compared to the prediction of the traditional individual models. Results demonstrate that a hybrid model combining machine-learning methods with statistical method outperformed a hybrid model that only combines machine-learning models without statistical method.

Details

Applied Computing and Informatics, vol. 20 no. 3/4
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 18 January 2024

Jing Tang, Yida Guo and Yilin Han

Coal is a critical global energy source, and fluctuations in its price significantly impact related enterprises' profitability. This study aims to develop a robust model for…

Abstract

Purpose

Coal is a critical global energy source, and fluctuations in its price significantly impact related enterprises' profitability. This study aims to develop a robust model for predicting the coal price index to enhance coal purchase strategies for coal-consuming enterprises and provide crucial information for global carbon emission reduction.

Design/methodology/approach

The proposed coal price forecasting system combines data decomposition, semi-supervised feature engineering, ensemble learning and deep learning. It addresses the challenge of merging low-resolution and high-resolution data by adaptively combining both types of data and filling in missing gaps through interpolation for internal missing data and self-supervision for initiate/terminal missing data. The system employs self-supervised learning to complete the filling of complex missing data.

Findings

The ensemble model, which combines long short-term memory, XGBoost and support vector regression, demonstrated the best prediction performance among the tested models. It exhibited superior accuracy and stability across multiple indices in two datasets, namely the Bohai-Rim steam-coal price index and coal daily settlement price.

Originality/value

The proposed coal price forecasting system stands out as it integrates data decomposition, semi-supervised feature engineering, ensemble learning and deep learning. Moreover, the system pioneers the use of self-supervised learning for filling in complex missing data, contributing to its originality and effectiveness.

Details

Data Technologies and Applications, vol. 58 no. 3
Type: Research Article
ISSN: 2514-9288

Keywords

Open Access
Article
Publication date: 2 April 2024

Koraljka Golub, Osma Suominen, Ahmed Taiye Mohammed, Harriet Aagaard and Olof Osterman

In order to estimate the value of semi-automated subject indexing in operative library catalogues, the study aimed to investigate five different automated implementations of an…

Abstract

Purpose

In order to estimate the value of semi-automated subject indexing in operative library catalogues, the study aimed to investigate five different automated implementations of an open source software package on a large set of Swedish union catalogue metadata records, with Dewey Decimal Classification (DDC) as the target classification system. It also aimed to contribute to the body of research on aboutness and related challenges in automated subject indexing and evaluation.

Design/methodology/approach

On a sample of over 230,000 records with close to 12,000 distinct DDC classes, an open source tool Annif, developed by the National Library of Finland, was applied in the following implementations: lexical algorithm, support vector classifier, fastText, Omikuji Bonsai and an ensemble approach combing the former four. A qualitative study involving two senior catalogue librarians and three students of library and information studies was also conducted to investigate the value and inter-rater agreement of automatically assigned classes, on a sample of 60 records.

Findings

The best results were achieved using the ensemble approach that achieved 66.82% accuracy on the three-digit DDC classification task. The qualitative study confirmed earlier studies reporting low inter-rater agreement but also pointed to the potential value of automatically assigned classes as additional access points in information retrieval.

Originality/value

The paper presents an extensive study of automated classification in an operative library catalogue, accompanied by a qualitative study of automated classes. It demonstrates the value of applying semi-automated indexing in operative information retrieval systems.

Article
Publication date: 3 September 2024

Biplab Bhattacharjee, Kavya Unni and Maheshwar Pratap

Product returns are a major challenge for e-businesses as they involve huge logistical and operational costs. Therefore, it becomes crucial to predict returns in advance. This…

Abstract

Purpose

Product returns are a major challenge for e-businesses as they involve huge logistical and operational costs. Therefore, it becomes crucial to predict returns in advance. This study aims to evaluate different genres of classifiers for product return chance prediction, and further optimizes the best performing model.

Design/methodology/approach

An e-commerce data set having categorical type attributes has been used for this study. Feature selection based on chi-square provides a selective features-set which is used as inputs for model building. Predictive models are attempted using individual classifiers, ensemble models and deep neural networks. For performance evaluation, 75:25 train/test split and 10-fold cross-validation strategies are used. To improve the predictability of the best performing classifier, hyperparameter tuning is performed using different optimization methods such as, random search, grid search, Bayesian approach and evolutionary models (genetic algorithm, differential evolution and particle swarm optimization).

Findings

A comparison of F1-scores revealed that the Bayesian approach outperformed all other optimization approaches in terms of accuracy. The predictability of the Bayesian-optimized model is further compared with that of other classifiers using experimental analysis. The Bayesian-optimized XGBoost model possessed superior performance, with accuracies of 77.80% and 70.35% for holdout and 10-fold cross-validation methods, respectively.

Research limitations/implications

Given the anonymized data, the effects of individual attributes on outcomes could not be investigated in detail. The Bayesian-optimized predictive model may be used in decision support systems, enabling real-time prediction of returns and the implementation of preventive measures.

Originality/value

There are very few reported studies on predicting the chance of order return in e-businesses. To the best of the authors’ knowledge, this study is the first to compare different optimization methods and classifiers, demonstrating the superiority of the Bayesian-optimized XGBoost classification model for returns prediction.

Details

Journal of Systems and Information Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1328-7265

Keywords

Article
Publication date: 5 September 2024

Chinmaya Prasad Padhy, Suryakumar Simhambhatla and Debraj Bhattacharjee

This study aims to improve the mechanical properties of an object produced by fused deposition modelling with high-grade polymer.

Abstract

Purpose

This study aims to improve the mechanical properties of an object produced by fused deposition modelling with high-grade polymer.

Design/methodology/approach

The study uses an ensembled surrogate-assisted evolutionary algorithm (SAEA) to optimize the process parameters for example, layer height, print speed, print direction and nozzle temperature for enhancing the mechanical properties of temperature-sensitive high-grade polymer poly-ether-ether-ketone (PEEK) in fused deposition modelling (FDM) 3D printing while considering print time as one of the important parameter. These models are integrated with an evolutionary algorithm to efficiently explore parameter space. The optimized parameters from the SAEA approach are compared with those obtained using the Gray Relational Analysis (GRA) Taguchi method serving as a benchmark. Later, the study also highlights the significant role of print direction in optimizing the mechanical properties of FDM 3D printed PEEK.

Findings

With the use of ensemble learning-based SAEA, one can successfully maximize the ultimate stress and percentage elongation with minimum print time. SAEA-based solution has 28.86% higher ultimate stress, 66.95% lower percentage of elongation and 7.14% lower print time in comparison to the benchmark result (GRA Taguchi method). Also, the results from the experimental investigation indicate that the print direction has a greater role in deciding the optimum value of mechanical properties for FDM 3D printed high-grade thermoplastic PEEK polymer.

Research limitations/implications

This study is valid for the parameter ranges, which are defined to conduct the experimentation.

Practical implications

This study has been conducted on the basis of taking only a few important process parameters as per the literatures and available scope of the study; however, there are many other parameters, e.g. wall thickness, road width, print orientation, fill pattern, roller speed, retraction, etc. which can be included to make a more comprehensive investigation and accuracy of the results for practical implementation.

Originality/value

This study deploys a novel meta-model-based optimization approach for enhancing the mechanical properties of high-grade thermoplastic polymers, which is rarely available in the published literature in the research domain.

Article
Publication date: 23 May 2024

Jiunwen Wang

This essay articulates the vision of a flourishing classroom, which arguably is the ultimate goal of a positive approach to management education. By demonstrating how…

Abstract

Purpose

This essay articulates the vision of a flourishing classroom, which arguably is the ultimate goal of a positive approach to management education. By demonstrating how improvisational theater is the epitome of a flourishing ensemble, this essay proposes that there are some lessons educators can glean from improvisational theater in order to achieve a flourishing classroom. The applications, benefits and challenges of applying improvisational theater in the classroom are also discussed.

Design/methodology/approach

This essay articulates the vision of a flourishing classroom, which arguably is the ultimate goal of a positive approach to management education. By demonstrating how improvisational theater is the epitome of a flourishing ensemble, this essay proposes that there are some lessons educators can glean from improvisational theater in order to achieve a flourishing classroom. The applications, benefits and challenges of applying improvisational theater in the classroom are also discussed.

Findings

Improvisational theatre can shed some light on teaching pedagogies within the classroom. Building trust in the classroom community, framing failure as learning opportunities, and promoting the improvisational mindset can enable students to learn better.

Originality/value

This essay articulates the vision of a flourishing management classroom, which arguably is the ultimate goal of a positive approach to management education. By demonstrating how improvisational theater is the epitome of a flourishing ensemble, this essay proposes that there are some lessons management educators can glean from improvisational theater in order to achieve a flourishing management classroom. The applications, benefits and challenges of applying improvisational theater in the classroom are also discussed.

Details

Journal of Applied Research in Higher Education, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2050-7003

Keywords

1 – 10 of 469