Search results

1 – 10 of 98
Open Access
Article
Publication date: 5 February 2018

Joseph-Alexander Zeitler

Most of the European apartment blocks are rental units of which the majority needs major refurbishments in upcoming years to achieve climate goals. On the other hand, it is still…

1170

Abstract

Purpose

Most of the European apartment blocks are rental units of which the majority needs major refurbishments in upcoming years to achieve climate goals. On the other hand, it is still difficult for property owners to evaluate the profitability of energetic retrofitting investments. The purpose of this paper is to contribute to the situation by forming a standardized framework and tool to calculate profitability of energy efficiency investments throughout Europe.

Design/methodology/approach

From a European perspective, several different areas of interest (technical, legal, institutional and financial) have been screened to develop an extensive compendium. This has been performed by literature research and several national surveys. Based on these findings, an online-based tool for profitability calculation has been developed to support the decision-making process of each individual, regardless his knowledge on energy efficiency.

Findings

This paper provides a short overview on main investment barriers in Germany. It is found that both market conditions and information deficits harm energy efficiency investments. Frequently, the decision-making process is found difficult due to inflexible regulations and lack of knowledge. This dramatically reduces market incentives that are already in place. Most often, the investor user dilemma is seen as the main investment obstacle. In this context, transparency and reliability are found to trigger energy-efficient investments.

Practical implications

Findings are used to identify best practice examples and to assess their transferability to other markets and countries. Innovative solutions have been extracted to improve the overall investment climate.

Originality/value

The paper contributes to a sound foundation for energy-related investments and the fulfillment of EU reduction targets.

Details

Journal of Property Investment & Finance, vol. 36 no. 1
Type: Research Article
ISSN: 1463-578X

Keywords

Open Access
Article
Publication date: 24 July 2020

Maximilian M. Spanner and Julia Wein

The purpose of this paper is to investigate the functionality and effectiveness of the Carbon Risk Real Estate Monitor (CRREM tool). The aim of the project, supported by the…

5496

Abstract

Purpose

The purpose of this paper is to investigate the functionality and effectiveness of the Carbon Risk Real Estate Monitor (CRREM tool). The aim of the project, supported by the European Union’s Horizon 2020 research and innovation program, was to develop a broadly accepted tool that provides investors and other stakeholders with a sound basis for the assessment of stranding risks.

Design/methodology/approach

The tool calculates the annual carbon emissions (baseline emissions) of a given asset or portfolio and assesses the stranding risks, by making use of science-based decarbonisation pathways. To account for ongoing climate change, the tool considers the effects of grid decarbonisation, as well as the development of heating and cooling-degree days.

Findings

The paper provides property-specific carbon emission pathways, as well as valuable insight into state-of-the-art carbon risk assessment and management measures and thereby paves the way towards a low-carbon building stock. Further selected risk indicators at the asset (e.g. costs of greenhouse gas emissions) and aggregated levels (e.g. Carbon Value at Risk) are considered.

Research limitations/implications

The approach described in this paper can serve as a model for the realisation of an enhanced tool with respect to other countries, leading to a globally applicable instrument for assessing stranding risks in the commercial real estate sector.

Practical implications

The real estate industry is endangered by the downside risks of climate change, leading to potential monetary losses and write-downs. Accordingly, this approach enables stakeholders to assess the exposure of their assets to stranding risks, based on energy and emission data.

Social implications

The CRREM tool reduces investor uncertainty and offers a viable basis for investment decision-making with regard to stranding risks and retrofit planning.

Originality/value

The approach pioneers a way to provide investors with a profound stranding risk assessment based on science-based decarbonisation pathways.

Details

Journal of European Real Estate Research , vol. 13 no. 3
Type: Research Article
ISSN: 1753-9269

Keywords

Open Access
Article
Publication date: 19 May 2022

Christopher Amoah and Jeanne Smith

This study aims to examine the challenges for green retrofitting implementation in existing residential buildings to lower the running cost and achieve a better energy-efficient…

4514

Abstract

Purpose

This study aims to examine the challenges for green retrofitting implementation in existing residential buildings to lower the running cost and achieve a better energy-efficient system.

Design/methodology/approach

This study adopted a qualitative approach by interviewing conveniently selected 16 construction professionals, made up of architects, quantity surveyors and engineers. Data received were analysed using the content analysis method.

Findings

The findings revealed that the main barriers to incorporating green retrofitting in the existing residential buildings as the nature of the existing structures, limited knowledge, not being a priority and high costs involved in the process. Moreover, other factors influencing property developers’ decision to apply energy-efficient principles in a residential home include cost (initial capital and maintenance), level of knowledge, nature of the climate in the area, local legislation, more independence and increasing the property’s market value and environmental aspect.

Research limitations/implications

This study is limited to South Africa; thus, the literature available was limited.

Practical implications

People’s perceptions, either wrong or correct, affect their ability to make an informed decision to adopt green retrofitting principles, thereby denying them the opportunity to reap the associated benefits. Therefore, there is an urgent need for the construction industry stakeholders and government to increase educational opportunities for property owners on the importance of green retrofitting.

Originality/value

This study provides the occupants with the possible barriers and problem areas with implementing these principles. They will thus make an informed decision when implementing sustainable design methods.

Details

Journal of Facilities Management , vol. 22 no. 2
Type: Research Article
ISSN: 1472-5967

Keywords

Open Access
Book part
Publication date: 1 May 2019

Eero Nippala and Terttu Vainio

Existing old building stock needs retrofit of structures and performance upgrading. Retrofit is often neglected, either lacking understanding of maintenance importance or to keep…

Abstract

Purpose

Existing old building stock needs retrofit of structures and performance upgrading. Retrofit is often neglected, either lacking understanding of maintenance importance or to keep living costs low. Retrofit is inevitable. Depending on a buildings geographical location, condition or expected time of use; demolition of building or increment space is worth considering. This study looks at the economics about which is the best option: renovation and energy efficient upgrading of existing building or replacement of existing building.

Design

Research method is case study. The same case building – size, age, existing performance as well as renovation and new performance – studied at different regions. These are (1) growing city, (2) stable city and (3) shrinking city. Life cycle cost analysis bases on payback periods. The most important input data are the rent and occupancy rate on each area.

Findings

In growing cities, both renovation and replacement of existing buildings are feasible options. In other two areas, payback periods of renovations are rather long and acceptable only if building is in own use. Often retrofit is necessary because of the poor condition of the building.

Research Implications

This study looks at the subject only from building owners economical point of view and ties building to its location. Life cycle assessment (energy use and greenhouse gas emissions) has analysed earlier (Nippala and Heljo, 2010).

Practical Implications

Analysis gives the most feasible option to different regions.

Originality

This study raises the debate on how realistic it is to expect the building stock to meet the EU’s energy saving and greenhouse cut targets.

Details

10th Nordic Conference on Construction Economics and Organization
Type: Book
ISBN: 978-1-83867-051-1

Keywords

Abstract

Details

Journal of Property Investment & Finance, vol. 32 no. 4
Type: Research Article
ISSN: 1463-578X

Open Access
Article
Publication date: 4 July 2022

Shiyu Wan, Yisheng Liu, Grace Ding, Goran Runeson and Michael Er

This article aims to establish a dynamic Energy Performance Contract (EPC) risk allocation model for commercial buildings based on the theory of Incomplete Contract. The purpose…

1557

Abstract

Purpose

This article aims to establish a dynamic Energy Performance Contract (EPC) risk allocation model for commercial buildings based on the theory of Incomplete Contract. The purpose is to fill the policy vacuum and allow stakeholders to manage risks in energy conservation management by EPCs to better adapt to climate change in the building sector.

Design/methodology/approach

The article chooses a qualitative research approach to depict the whole risk allocation picture of EPC projects and establish a dynamic EPC risk allocation model for commercial buildings in China. It starts with a comprehensive literature review on risks of EPCs. By modifying the theory of Incomplete Contract and adopting the so-called bow-tie model, a theoretical EPC risk allocation model is developed and verified by interview results. By discussing its application in the commercial building sector in China, an operational EPC three-stage risk allocation model is developed.

Findings

This study points out the contract incompleteness of the risk allocation for EPC projects and offered an operational method to guide practice. The reasonable risk allocation between building owners and Energy Service Companies can realize their bilateral targets on commercial building energy-saving benefits, which makes EPC more attractive for energy conservation.

Originality/value

Existing research focused mainly on static risk allocation. Less research was directed to the phased and dynamic risk allocation. This study developed a theoretical three-stage EPC risk allocation model, which provided the theoretical support for dynamic EPC risk allocation of EPC projects. By addressing the contract incompleteness of the risk allocation, an operational method is developed. This is a new approach to allocate risks for EPC projects in a dynamic and staged way.

Details

International Journal of Climate Change Strategies and Management, vol. 15 no. 4
Type: Research Article
ISSN: 1756-8692

Keywords

Content available
Article
Publication date: 5 December 2020

Sven Bienert, Stanley McGreal and Paloma Taltavull

594

Abstract

Details

Journal of European Real Estate Research , vol. 13 no. 3
Type: Research Article
ISSN: 1753-9269

Content available
Article
Publication date: 14 March 2022

Sofiane Laribi and Emmanuel Guy

The article investigates factors associated with the relative success in adopting two specific alternative marine energies (liquefied natural gas [LNG] and electric batteries) in…

Abstract

Purpose

The article investigates factors associated with the relative success in adopting two specific alternative marine energies (liquefied natural gas [LNG] and electric batteries) in the Norwegian ferry market. This specific market segment is an interesting case study as its national-flagged fleet boasting the largest number of ships using alternative marine energies in comparison with the other countries of the region and the world.

Design/methodology/approach

A database tracking the yearly deployment of ships using a different combination of LNG and electric batteries was built from shipping lines’ online information and grey literature. The technological adoption approach was used to categorize different groups of users at each step of the adoption process and identify which factors separate the early adopters from the other groups of end-users. The compiled data allow tracing the changing distribution of Norwegian ferry operators along the conceptualized technology adoption curve.

Findings

Results indicated that the Norwegian ferry market matches required conditions to pass the “chasm” of uncertainties associated with transitioning to new technology. Some disparities between the adoption of LNG and the electric batteries in the Norwegian ferry markets are observed.

Originality/value

To the authors’ knowledge, no study has explored the adoption of new energies in the maritime industry based on the technology adoption process through a similar perspective. The analysis is helpful to shed light on the barriers associated with a high level of uncertainties when it comes to adopting new marine energies.

Details

Maritime Business Review, vol. 8 no. 1
Type: Research Article
ISSN: 2397-3757

Keywords

Open Access
Article
Publication date: 1 September 2023

Alireza Moghayedi, Kathy Michell, Dylan Hübner, Karen Le Jeune and Mark Massyn

This study investigates the barriers and drivers of using green methods and technologies (GMTs) in supportive educational buildings (SEBs) in South Africa, and assesses their…

1259

Abstract

Purpose

This study investigates the barriers and drivers of using green methods and technologies (GMTs) in supportive educational buildings (SEBs) in South Africa, and assesses their impact on the circular economy (CE) in achieving net-zero carbon goals. While there has been extensive literature on green building technologies, there is limited research on the barriers and drivers of using GMT in SEBs, as well as their impact on the circular economy (CE) in achieving net-zero carbon goals.

Design/methodology/approach

This study adopts an interpretivist approach with an ontological basis, using an overarching case study of a SEB at the University of Cape Town (UCT). Semistructured interviews were conducted with executive UCT management, and a field survey of a UCT supportive education building was performed.

Findings

At UCT, multiple GMTs have been installed across various buildings to enhance monitoring and management of water and energy consumption. Moreover, initiatives to positively influence student behavior, such as water and energy-saving campaigns around UCT premises, have been introduced. The findings further indicate that UCT has recently emphasized the implementation of GMTs, resulting in improved resource efficiency, CE practices and progress toward achieving net-zero carbon targets for supportive education buildings and the university as a whole.

Originality/value

This research highlights the positive impact of GMTs on a SEB’s CE and net-zero carbon operations. As a result, facility managers should consider incorporating GMTs when planning the development or refurbishment of SEBs.

Details

Facilities , vol. 42 no. 3/4
Type: Research Article
ISSN: 0263-2772

Keywords

Open Access
Article
Publication date: 22 April 2020

David Ness

While most efforts to combat climate change are focussed on energy efficiency and substitution of fossil fuels, growth in the built environment remains largely unquestioned. Given…

Abstract

While most efforts to combat climate change are focussed on energy efficiency and substitution of fossil fuels, growth in the built environment remains largely unquestioned. Given the current climate emergency and increasing scarcity of global resources, it is imperative that we address this “blind spot” by finding ways to support required services with less resource consumption.

There is now long overdue recognition to greenhouse gas emissions “embodied” in the production of building materials and construction, and its importance in reaching targets of net zero carbon by 2050. However, there is a widespread belief that we can continue to “build big”, provided we incorporate energy saving measures and select “low carbon materials” – ignoring the fact that excessive volume and area of buildings may outweigh any carbon savings. This is especially the case with commercial real estate.

As the inception and planning phases of projects offer most potential for reduction in both operational and embodied carbon, we must turn our attention to previously overlooked options such as “build nothing” or “build less”. This involves challenging the root cause of the need, exploring alternative approaches to meet desired outcomes, and maximising the use of existing assets. If new build is required, this should be designed for adaptability, with increased stewardship, so the building stock of the future will be a more valuable and useable resource.

This points to the need for increased understanding and application of the principles of strategic asset management, hitherto largely ignored in sustainability circles, which emphasize a close alignment of assets with the services they support.

Arguably, as the built environment consumes more material resources and energy than any other sector, its future configuration may be critical to the future of people and the planet. In this regard, this paper seeks to break new ground for deeper exploration.

1 – 10 of 98