Search results

1 – 1 of 1
Article
Publication date: 13 July 2010

George S. Kliros, George Kyritsis and Dimos Touzloudis

The purpose of this paper is to investigate of the ultra‐wide band (UWB) characteristics of a conical antenna covered by an electromagnetic band‐gap (EBG) structure composed of…

Abstract

Purpose

The purpose of this paper is to investigate of the ultra‐wide band (UWB) characteristics of a conical antenna covered by an electromagnetic band‐gap (EBG) structure composed of alternating high‐ and low‐permittivity dielectric spherical shells.

Design/methodology/approach

A finite difference time domain in spherical coordinates is implemented in order to characterize the antenna's performance and waveform fidelity in case an UWB pulse is used. The method of projected effective permittivity is used in order to treat accurately the dielectric interfaces between the dissimilar spherical shells.

Findings

The design achieves a very wide impedance bandwidth above 5.5 GHz and presents UWB radiation characteristics and high average gain over the whole bandwidth. The radiation patterns are monopole‐like and their frequency dependence is small in the whole UWB frequency band. A time domain study has shown that the antenna distorts the excitation pulse in a moderate way.

Originality/value

In this paper, a quasi‐planar wideband conical antenna coated on a dielectric EBG structure is proposed for what is believed to be the first time. It is mechanically stable and, relatively easy to build and integrate with the planar circuits.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 1 of 1