Search results

1 – 3 of 3
Article
Publication date: 20 November 2009

Diana F. Spears, David R. Thayer and Dimitri V. Zarzhitsky

In light of the current international concerns with security and terrorism, interest is increasing on the topic of using robot swarms to locate the source of chemical hazards. The…

Abstract

Purpose

In light of the current international concerns with security and terrorism, interest is increasing on the topic of using robot swarms to locate the source of chemical hazards. The purpose of this paper is to place this task, called chemical plume tracing (CPT), in the context of fluid dynamics.

Design/methodology/approach

This paper provides a foundation for CPT based on the physics of fluid dynamics. The theoretical approach is founded upon source localization using the divergence theorem of vector calculus, and the fundamental underlying notion of the divergence of the chemical mass flux. A CPT algorithm called fluxotaxis is presented that follows the gradient of this mass flux to locate a chemical source emitter.

Findings

Theoretical results are presented confirming that fluxotaxis will guide a robot swarm toward chemical sources, and away from misleading chemical sinks. Complementary empirical results demonstrate that in simulation, a swarm of fluxotaxis‐guided mobile robots rapidly converges on a source emitter despite obstacles, realistic vehicle constraints, and flow regimes ranging from laminar to turbulent. Fluxotaxis outperforms the two leading competitors, and the theoretical results are confirmed experimentally. Furthermore, initial experiments on real robots show promise for CPT in relatively uncontrolled indoor environments.

Practical implications

A physics‐based approach is shown to be a viable alternative to existing mainly biomimetic approaches to CPT. It has the advantage of being analyzable using standard physics analysis methods.

Originality/value

The fluxotaxis algorithm for CPT is shown to be “correct” in the sense that it is guaranteed to point toward a true source emitter and not be fooled by fluid sinks. It is experimentally (in simulation), and in one case also theoretically, shown to be superior to its leading competitors at finding a source emitter in a wide variety of challenging realistic environments.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 2 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 23 November 2010

Dimitri V. Zarzhitsky, Diana F. Spears and David R. Thayer

The purpose of this paper is to describe a multi‐robot solution to the problem of chemical source localization, in which a team of inexpensive, simple vehicles with short‐range…

Abstract

Purpose

The purpose of this paper is to describe a multi‐robot solution to the problem of chemical source localization, in which a team of inexpensive, simple vehicles with short‐range, low‐power sensing, communication, and processing capabilities trace a chemical plume to its source emitter

Design/methodology/approach

The source localization problem is analyzed using computational fluid dynamics simulations of airborne chemical plumes. The analysis is divided into two parts consisting of two large experiments each: the first part focuses on the issues of collaborative control, and the second part demonstrates how task performance is affected by the number of collaborating robots. Each experiment tests a key aspect of the problem, e.g. effects of obstacles, and defines performance metrics that help capture important characteristics of each solution.

Findings

The new empirical simulations confirmed previous theoretical predictions: a physics‐based approach is more effective than the biologically inspired methods in meeting the objectives of the plume‐tracing mission. This gain in performance is consistent across a variety of plume and environmental conditions. This work shows that high success rate can be achieved by robots using strictly local information and a fully decentralized, fault‐tolerant, and reactive control algorithm.

Originality/value

This is the first paper to compare a physics‐based approach against the leading alternatives for chemical plume tracing under a wide variety of fluid conditions and performance metrics. This is also the first presentation of the algorithms showing the specific mechanisms employed to achieve superior performance, including the underlying fluid and other physics principles and their numerical implementation, and the mechanisms that allow the practitioner to duplicate the outstanding performance of this approach under conditions of many robots navigating through obstacle‐dense environments.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 3 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Content available
Article
Publication date: 20 November 2009

Suranga Hettiarachchi and William M. Spears

541

Abstract

Details

International Journal of Intelligent Computing and Cybernetics, vol. 2 no. 4
Type: Research Article
ISSN: 1756-378X

1 – 3 of 3