Search results

1 – 4 of 4
Article
Publication date: 26 July 2024

Mustafa Turkyilmazoglu

The purpose of this study is two-fold. First, it aims to differentiate the response of a stretching jet encountering a quadratic air resistance from the classical jet shape formed…

Abstract

Purpose

The purpose of this study is two-fold. First, it aims to differentiate the response of a stretching jet encountering a quadratic air resistance from the classical jet shape formed in a frictionless medium. Second, it investigates how the resulting jet forms with and without air resistance, seeking evidence that supports the similarity flows frequently studied for stretching/moving thin bodies under the boundary layer approximation.

Design/methodology/approach

This study extends the established electrohydrodynamic stretching jet theory, used to model electrospinning or jet printing in the absence of air resistance, to encompass the impact of the retarding force on the jet stretching in both the cone and final regimes before it impinges on a substrate.

Findings

A close examination of the nonlinear governing equations reveals that the jet rapidly thins near the nozzle because of the combined action of viscous and electrical forces. In this region, the exponentially decaying jet receives further support from the air resistance, resulting in a closer alignment with the observed experimental jet. This exponential decay, accelerated by the inversely quadratic speed of the liquid particles, serves as clear evidence for the existence of a similarity flow over an exponentially stretching sheet. Furthermore, in the final regime, the jet stretching exhibits an algebraic decay in the absence of air friction, while with air resistance, it decays exponentially to reach a limiting speed. In the former case, a square root dependence of the stretching jet speed leads to the emergence of a similarity flow over a thin stretching jet, while in the latter case, a Sakiadis’ similarity flow appears over a continuously moving flat surface.

Practical implications

The analysis goes beyond jet hydrodynamics, delving into the interplay of electrostatic forces (including Coulomb’s law) and quadratic air drag, drawing upon experimental data on glycerol liquid presented in earlier publications.

Originality/value

Finally, the asymptotic behavior of the stretching jet under the combined influence of electrostatic pull and its electric currents because of bulk conduction and surface convection is validated through a comprehensive numerical simulation of the nonlinear system.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 August 2024

Vali Dalouji and Nasim Rahimi

The purpose of this paper is to study the correlation between the thicknesses of the C–Ni films that have been prepared by RF-magnetron sputtering on quartz substrates and their…

Abstract

Purpose

The purpose of this paper is to study the correlation between the thicknesses of the C–Ni films that have been prepared by RF-magnetron sputtering on quartz substrates and their three-dimensional (3D) micro morphology. In this work by AFM images, this paper studied stereo metric analysis of these films.

Design/methodology/approach

The C–Ni films have been prepared by RF-magnetron sputtering on quartz substrates using a mosaic target consisting of pure graphite and strips of pure nickel approximately 2 cm2 attached to the graphite race track. The field emission scanning electronic microscopy (FESEM) images were used for the morphological characterization.

Findings

The histogram peaks are zero for all samples and the histograms are almost symmetric around zero. Temperature did not have much effect on the degree of isolation, so all four diagrams have similar results. The qualitative observations through statistical parameters of the 3D surface texture revealed that the smoothest surface has been obtained for C-Ni films annealed at 500 °C (Sa, Sq, Sz and Sv have the lower values), while the most irregular topography has been found for C-Ni films annealed at 300 °C (the fractal dimension D = 2.01 ± 0.131).

Originality/value

As shown in FESEM images, the size of the particles was increased for films deposited from 300 ºC to 800ºC; however, at 1000ºC, it decreased significantly. The histogram peaks are zero for all samples and the histograms were almost symmetric around zero. Also, the largest and lowest root mean heights (Sq) belong to films at 300 °C and 500 °C. Furthermore, the more irregular surface was found at 300 °C, and the more regular surface was found at 500 °C. As the temperature was increased to 800 °C, the values of the IAPSD function increased systematically, and then the values of the IAPSD function was decreased in the fourth sample. The surface skewness of samples annealed at 1000 °C was positive which confirms the lack of dominance of cavities on their surface with the highest amount of C-Ni films at 800 °C.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 18 July 2024

Anindya Bose, Sarthak Sengupta and Sayori Biswas

This study aims to provide a microfluidic blood glucose sensing platform based on integrated interdigitated electrode arrays (IDEAs) on a flexible quartz glass substrate, adhering…

Abstract

Purpose

This study aims to provide a microfluidic blood glucose sensing platform based on integrated interdigitated electrode arrays (IDEAs) on a flexible quartz glass substrate, adhering closely to pertinent electrochemical characterizations.

Design/methodology/approach

Sensors are the key elements of the modern electronics era through which all the possible physical quantities can be detected and converted into their equivalent electrical form and processed further. But to make the sensing environment better, various types of innovative architectures are being developed nowadays and among them interdigitated electrodes are quite remarkable in terms of their sensing capability. They are a well-qualified candidate in the field of gas sensing and biosensing, but even their sensitivities are getting saturated due to their physical dimensions. Most of the thin film IDEAs fabricated by conventional optical lithographic techniques do not possess a high surface-to-volume ratio to detect the target specified and that reduces their sensitivity factor. In this context, a classic conductive carbon-based highly sensitive three dimensional (3D) IDEA-enabled biosensing system has been conceived on a transparent and flexible substrate to measure the amount of glucose concentration present in human blood. 3D IDEA possesses a way better capacitive sensing behavior compared to conventional thin film microcapacitive electrodes. To transmit the target biological analyte sample property for the detection purpose to the interdigitated array-based sensing platform, the design of a microfluidic channel is initiated on the same substrate. The complex 3D Inter Digital array structure improves the overall capacitance of the entire sensing platform and the reactive surface area as well. The manufactured integrated device displays a decent value of sensitivity in the order of 5.6 µA mM−1 cm−2.

Findings

Development of a low-cost array-based integrated and highly flexible microfluidic biochip to extract the quantity of glucose present in human blood.

Originality/value

Potential future research opportunities in the realm of integrated miniaturized, low-cost smart biosensing systems may arise from this study.

Details

Sensor Review, vol. 44 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 12 September 2024

Fawzy Alsharif and Cetin Kurnaz

This paper aims to present an innovative reconfigurable series-fed microstrip antenna using radiofrequency positive intrinsic negative (RF PIN) diodes for cognitive S-band and…

Abstract

Purpose

This paper aims to present an innovative reconfigurable series-fed microstrip antenna using radiofrequency positive intrinsic negative (RF PIN) diodes for cognitive S-band and C-band satellite communications. The antenna can dynamically reconfigure its frequency, polarization and radiation pattern to meet diverse application needs.

Design/methodology/approach

The design involves a reconfigurable four-element microstrip antenna using FR4 substrate and copper patches. RF PIN diodes enable dynamic frequency, polarization and radiation pattern reconfiguration. Simulations and optimizations are performed using CST and HFSS, using techniques like the Nelder-Mead algorithm, particle swarm optimization, covariance matrix adaptation and trust region framework. An antenna prototype is also fabricated to validate the simulations.

Findings

The proposed antenna demonstrates significant reconfigurability: it switches between S-band (2.45 GHz, 2.52 GHz) and C-band (5.55 GHz, 5.59 GHz) with bandwidths of 120 MHz and 550 MHz, respectively. It transitions between circular and linear polarization in the S-band and modifies the radiation pattern by 45 degrees, providing an alternative radiation direction in the C-band. The antenna achieves a maximum gain of 5.95 dBi at 2.52 GHz and 93% efficiency at 5.55 GHz. Simulated results closely match those from the fabricated prototype, confirming the design’s validity.

Originality/value

The innovative use of RF PIN diodes enables comprehensive reconfigurability in frequency, polarization and radiation patterns within a single microstrip antenna, meeting the demands of S-band and C-band satellite communications. This study demonstrates superior performance, significant gains and efficiencies across various reconfiguration modes, validated by rigorous simulation and practical fabrication. The simple structural design further distinguishes this study from others in the field.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 4 of 4