Search results

1 – 2 of 2
Open Access
Article
Publication date: 23 November 2023

Reema Khaled AlRowais and Duaa Alsaeed

Automatically extracting stance information from natural language texts is a significant research problem with various applications, particularly after the recent explosion of…

265

Abstract

Purpose

Automatically extracting stance information from natural language texts is a significant research problem with various applications, particularly after the recent explosion of data on the internet via platforms like social media sites. Stance detection system helps determine whether the author agree, against or has a neutral opinion with the given target. Most of the research in stance detection focuses on the English language, while few research was conducted on the Arabic language.

Design/methodology/approach

This paper aimed to address stance detection on Arabic tweets by building and comparing different stance detection models using four transformers, namely: Araelectra, MARBERT, AraBERT and Qarib. Using different weights for these transformers, the authors performed extensive experiments fine-tuning the task of stance detection Arabic tweets with the four different transformers.

Findings

The results showed that the AraBERT model learned better than the other three models with a 70% F1 score followed by the Qarib model with a 68% F1 score.

Research limitations/implications

A limitation of this study is the imbalanced dataset and the limited availability of annotated datasets of SD in Arabic.

Originality/value

Provide comprehensive overview of the current resources for stance detection in the literature, including datasets and machine learning methods used. Therefore, the authors examined the models to analyze and comprehend the obtained findings in order to make recommendations for the best performance models for the stance detection task.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 21 December 2023

Oladosu Oyebisi Oladimeji and Ayodeji Olusegun J. Ibitoye

Diagnosing brain tumors is a process that demands a significant amount of time and is heavily dependent on the proficiency and accumulated knowledge of radiologists. Over the…

1256

Abstract

Purpose

Diagnosing brain tumors is a process that demands a significant amount of time and is heavily dependent on the proficiency and accumulated knowledge of radiologists. Over the traditional methods, deep learning approaches have gained popularity in automating the diagnosis of brain tumors, offering the potential for more accurate and efficient results. Notably, attention-based models have emerged as an advanced, dynamically refining and amplifying model feature to further elevate diagnostic capabilities. However, the specific impact of using channel, spatial or combined attention methods of the convolutional block attention module (CBAM) for brain tumor classification has not been fully investigated.

Design/methodology/approach

To selectively emphasize relevant features while suppressing noise, ResNet50 coupled with the CBAM (ResNet50-CBAM) was used for the classification of brain tumors in this research.

Findings

The ResNet50-CBAM outperformed existing deep learning classification methods like convolutional neural network (CNN), ResNet-CBAM achieved a superior performance of 99.43%, 99.01%, 98.7% and 99.25% in accuracy, recall, precision and AUC, respectively, when compared to the existing classification methods using the same dataset.

Practical implications

Since ResNet-CBAM fusion can capture the spatial context while enhancing feature representation, it can be integrated into the brain classification software platforms for physicians toward enhanced clinical decision-making and improved brain tumor classification.

Originality/value

This research has not been published anywhere else.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Access

Only content I have access to

Year

Last 12 months (2)

Content type

Earlycite article (2)
1 – 2 of 2