Search results

1 – 10 of 472
Article
Publication date: 1 January 1989

D.E. Riemer

The basic parameters of screen printing are discussed, and an analytical model of the screen printing process is introduced. The ink roll in front of the squeegee is treated as a…

1370

Abstract

The basic parameters of screen printing are discussed, and an analytical model of the screen printing process is introduced. The ink roll in front of the squeegee is treated as a pump generating, close to the squeegee edge, high hydrostatic pressure which injects ink into the screen meshes. The shearing of the ink, the mechanics of screen snap‐off and the ink transfer taking place behind the squeegee are also analysed.

Details

Microelectronics International, vol. 6 no. 1
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 1 March 1990

D.E. Riemer

A method for the prediction of solder joint cycle life in surface‐mount assemblies is presented, based on the conversion of plastic solder shear strain into cycle life by means of…

Abstract

A method for the prediction of solder joint cycle life in surface‐mount assemblies is presented, based on the conversion of plastic solder shear strain into cycle life by means of an equation derived by Engelmaier. The paper introduces a different analytical procedure for the determination of solder joint shear strain. Shear strain is normally calculated from temperature and TCE differentials between package and interconnect board without consideration of elastic deformations. The suggested method derives average plastic shear strain of the solder joint at maximum temperature excursion from finite‐element analysis of a simple model consisting of an interconnect board, a solder joint and a package. All materials in the model have linear (elastic) properties, except solder which has non‐linear (elastic/plastic) characteristics. The solder stress/strain curve is described to the finite‐element programme with temperature‐dependent bilinear approximations. The solder joint is modelled as a single finite element so that only one value is computed for the plastic shear strain in the solder joint. This value represents the average shear strain which is converted into solder joint cycle life. The cycle life predictions with the finite‐element method are confirmed by cycling results obtained on actual hardware. The described method can serve as a design tool in the optimisation of surface‐mount assemblies. The procedure can help to define accelerated temperature cycling conditions.

Details

Soldering & Surface Mount Technology, vol. 2 no. 3
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 1 March 1989

D.E. Riemer

This paper introduces thermal‐stress analysis methods which follow electrical engineering procedures. The spring constant or c‐value is found to be related to the electrical…

Abstract

This paper introduces thermal‐stress analysis methods which follow electrical engineering procedures. The spring constant or c‐value is found to be related to the electrical impedance, combining dimensions and material characteristics in a performance parameter which simplifies calculations. Voltage is used to represent thermal deformation, and thermal forces are modelled as currents. Relationships equivalent to Ohm's Law are applied to calculate thermal stresses in leads or traces of surface‐mount assemblies. The thermal performance of laminates, e.g., thermal expansion coefficients of interconnect boards with a restraining core, and the thermal stresses in the bonded layers, are derived from the analysis of an electrical network which represents the composite structure. The method provides visual concepts which facilitate a first‐order solution of engineering problems related to thermal stress.

Details

Soldering & Surface Mount Technology, vol. 1 no. 3
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 1 February 1994

N.N. Ekere, E.K. Lo and S.H. Mannan

This paper presents a technique for mapping the modelling of manufacturing processes, in which process maps are used to represent information on the models and modelling technique…

Abstract

This paper presents a technique for mapping the modelling of manufacturing processes, in which process maps are used to represent information on the models and modelling technique (including assumptions used), process and equipment parameters, physical sub‐processes, process variables, and the process performance in terms of quality and/or defects. The mapping approach uses the top‐down methodology, in which any manufacturing process can be represented in a structured, multi‐layered manner, with each layer representing a different level of the modelling spectrum. This structure is designed to provide a clear overview of the process and sub‐processes, and their interactions, while the finer details of the modelling process are still presented at the lower levels of the map. This mapping approach is illustrated with the modelling of the Printing of Solder Paste for the reflow soldering of SMT devices. This case study shows how the mapping process can be used to identify the key research issues, specify the experimental work required, and also identify the analytical modelling techniques which are appropriate for each process (and sub‐process).

Details

Soldering & Surface Mount Technology, vol. 6 no. 2
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 18 December 2017

Oliver Krammer, László Jakab, Balazs Illes, David Bušek and Ivana Beshajová Pelikánová

The attack angle of stencil printing squeegees with different geometries was analysed using finite element modelling.

Abstract

Purpose

The attack angle of stencil printing squeegees with different geometries was analysed using finite element modelling.

Design/methodology/approach

A finite element model (FEM) was developed to determine the attack angle during the stencil printing. The material properties of the squeegee were included in the model according to the parameters of steel AISI 4340, and the model was validated by experimental measurements. Two geometric parameters were investigated; two different unloaded angles (45° and 60°) and four overhang sizes of the squeegee (6, 15, 20 and 25 mm).

Findings

It was found that the deflection of the blade is nearly homogenous along the length of the squeegee. This implies that the attack angle does not change significantly along the squeegee length. The results showed significant differences between the initial and the attack angle. For example, the angle of the squeegee with 15 mm overhang size and with 60° initial angle decreased by more than 5° for a specific squeegee force of 0.3 N/mm; resulting in an attack angle of 53.4°.

Originality/value

The attack angle during the printing is considerably lower than the initial angle as a result of the printing force. The papers, which were dealing with the numerical modelling of the stencil printing presumed that the squeegees were having their initial angle. This could have led to invalid numerical results. Therefore, we decided to investigate the attack angle during stencil printing for squeegees with different initial geometries to enhance the numerical modelling of stencil printing.

Details

Soldering & Surface Mount Technology, vol. 30 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 February 1987

P. Palanisamy and D.H.R. Sarma

A major drawback of current copper thick‐film technology is the inefficient removal of the organic binder associated with the dielectric material in the low‐oxygen inert gas (N2…

Abstract

A major drawback of current copper thick‐film technology is the inefficient removal of the organic binder associated with the dielectric material in the low‐oxygen inert gas (N2) atmosphere of the furnace. In processing large area and/or multilayer substrates, the incomplete binder removal causes deleterious effects which have been well documented. Therefore, it is necessary to remove hydrocarbons and residual carbon from the films in the burn‐out section of the furnace before the films begin developing their characteristic microstructures. However, the atmosphere currently employed is not capable of removing all the carbon and hydrogen in the form of gaseous oxides. In literature, in addition to furnace modifications, several atmosphere modifications and manipulations have been proposed to achieve optimum properties for the fired films. With few exceptions, the scientific basis for such atmosphere modifications and manipulations has been left either unaddressed or obscure. With this background, this paper examines the feasibility of using a reactive gas mixture in the furnace to achieve efficient organic binder removal. Phase stability diagrams are presented to illustrate the stability of (i) carbon, (ii) thick film copper ingredients, (iii) active phases of resistors, and (iv) components of glassy and crystalline phases of dielectrics in selected reactive atmospheres. The stability of certain furnace belt constituents is also addressed. Mass balance calculations are shown to demonstrate the extent of carbon removal and copper oxidation in typical nitrogen atmospheres. Based on the interpretation of thermodynamic data and reaction mechanisms involved, a specific H2‐H2O mixture with nitrogen as the carrier gas is recommended. The approach presented here constitutes a general analytical scheme to understand materials‐atmosphere interactions occurring across a temperature range. Several issues in furnace design are also discussed from the standpoint of gas‐solid reaction kinetics. These deal with the design of gas‐flow systems that facilitate removal of organic binders.

Details

Microelectronics International, vol. 4 no. 2
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 1 March 1993

Y. Ousten, L. Bechou and N. Xiong

Present‐day electronics are shifting increasingly towards surface mounting technology (SMT) and hybrid technology (thick and thin film), which offer greater advantages due to…

Abstract

Present‐day electronics are shifting increasingly towards surface mounting technology (SMT) and hybrid technology (thick and thin film), which offer greater advantages due to their fabrication processes. Capacitors, like other components used in these processes, must occupy the smallest volume possible. Because of miniaturisation of the capacitors, the reliability of the surface mounting process is affected not only by the reliability of the components themselves but also by that of the assembly. In this study, a thermo‐mechanical simulation has been performed by means of ANSYS software based on the finite element method. This paper deals with the evaluation of a ceramic capacitor module (capacitors soldered on copper lands) on FR‐4 or alumina substrates during cooling to room temperature (25°C). The parameters of the assembly — temperature, length and thickness of the capacitor, thickness of the solder joint and nature of the substrate — were chosen by using the Design Of Experiments (DOE) method, which permits optimisation of these parameters and reduces the investigation time. The results showed a correlation between the length of the capacitor and the nature of the substrate used. Greater capacitor length is required for alumina substrate while a shorter length is preferred for FR‐4. It appears that a solder joint more than 100 urn thick may induce significant constraints on the copper lands and on the capacitor leads. It was noted that shear stress and voids in the solder joint can occur at temperatures higher than 250°C. This investigation makes it possible to prevent thermo‐mechanical stress damage during the mounting process and gives some recommendations for the choice of assembly variables.

Details

Microelectronics International, vol. 10 no. 3
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 1 March 1993

S.H. Mannan, N.N. Ekere, E.K. Lo and I. Ismail

This paper examines the rôle that the squeegee plays in the solder paste printing process. Although the printing of solder paste is only one stage of many in the surface mount…

Abstract

This paper examines the rôle that the squeegee plays in the solder paste printing process. Although the printing of solder paste is only one stage of many in the surface mount assembly process, it is crucial to deposit the correct amounts of solder paste cleanly onto the substrate. The amount of solder paste deposited affects the reliability and strength of the reflowed solder joint. Surface mount component lead pitches are continually being reduced due to the requirements of packing more and more components into a given space on the PCB, and this necessitates a proper understanding of the printing process and in particular of the squeegee which plays an important part in determining paste heights and the occurrence of defects. The paper outlines a model which predicts scooping and skipping in the stencil printing of solder pastes used in the reflow soldering of surface mounted devices. The model is based on the forces acting on the squeegee blade, which determines the paste flow pattern ahead of the squeegee, and on the stencil aperture geometry. The paper also examines the interactions between the paste properties and squeegee material properties. These interactions produce printing defects such as scooping, skipping and wet bridging. Results of an experimental comparison of different types of squeegee blade used in the stencil printing of solder pastes for reflow soldering in SMT, as well as the experimental results for squeegee deformation into stencil apertures, were used for validating the model. The empirically enhanced model which results takes into account the force on the squeegee due to solder paste flow and some of the non‐Newtonian properties of the solder paste. The main utility of the proposed model is the control of solder paste printing quality.

Details

Soldering & Surface Mount Technology, vol. 5 no. 3
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 1 February 1989

J.S. Choi, M. Bhalodia, S. Samph, P. Snowden, P. Yahner and K.J. Scoles

Thick film superconductors have been produced by screen printing and annealing pastes made from oxide powders and pre‐annealed powders. These films have been analysed by X‐ray…

Abstract

Thick film superconductors have been produced by screen printing and annealing pastes made from oxide powders and pre‐annealed powders. These films have been analysed by X‐ray diffraction, microwave absorption, resistance vs. temperature measurements, and adhesion tests. Results show the correlation between structural and electrical properties.

Details

Microelectronics International, vol. 6 no. 2
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 3 July 2007

David J. Clements, Marc P.Y. Desmulliez and Eitan Abraham

The objective of this investigation is the derivation of a mathematical model that describes the pressure characteristics of paste during the stencil printing process. This model…

Abstract

Purpose

The objective of this investigation is the derivation of a mathematical model that describes the pressure characteristics of paste during the stencil printing process. This model is intended to generalise a qualitative understanding of these effects using squeegees that can be curved but otherwise are standard in design.

Design/methodology/approach

This is an analytical treatment of the paste behaviour from the foundations of continuity of fluid flow and shear stresses that are imparted by the squeegee blade movement.

Findings

An equation is obtained that profiles the pressure generated by the squeegee movement which, for the case of a linear squeegee, shows very good agreement with predicted pressure profiles using experimental data.

Practical implications

This model provides a theoretical framework for a better understanding of how to overcome the failure modes inherent in stencil printing, such as over‐ or under‐filled stencil cavities.

Originality/value

This is a generalisation of a previously developed mesh printing model. It goes beyond flat squeegee designs to describe the printing process when the blade and stencil are in contact. In addition, it encompasses non‐Newtonian fluid behaviour.

Details

Soldering & Surface Mount Technology, vol. 19 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of 472