Search results

1 – 2 of 2
Article
Publication date: 7 November 2016

Abderrahmane Baïri, David San Martin, Iken Baïri, Kemi Adeyeye, Kaiming She, Ali Hocine, Nacim Alilat, Cyril Lamriben, Jean-Gabriel Bauzin, Bruno Chanetz and Najib Laraqi

The purpose of this paper is to examine the details of the air mass flow and aerodynamical phenomena across a channel containing a large vertical axis wind turbine. The considered…

Abstract

Purpose

The purpose of this paper is to examine the details of the air mass flow and aerodynamical phenomena across a channel containing a large vertical axis wind turbine. The considered model reproduces as closely as possible the real assembly of the Sistan-type wind-mill whose top is open. The technical results of this work could be used for the restoration and operation of this assembly whose historical and architectural values are recognized.

Design/methodology/approach

Several inlet velocities into the channel are considered, taking into account the possible local wind resources. Calculations corresponding to Reynolds number varying between 8×105 and 4×106 are made by means of the finite volume method and turbulence is treated with the realizable k-ε model. The mesh consists of a fixed part associated to the contour of the channel, interfaced with a moving one linked to the turbine itself, equipped with nine partly filled wings.

Findings

The relative pressure and velocity fields are presented for various dynamic and static conditions. Calculation results clearly show that the vortex phenomena present in some cases are not a source of degradation of the wind turbine’s aerodynamical performances, given its location, intensity and rotation direction. Particular attention is devoted to the air mass flow and its distribution between the inlet and the outlet sections of the channel.

Originality/value

The present work provides technical information useful to consider the restoration and modernization of this installation whose architecture and technical performance are very interesting. This survey complements a previous one examining the aerodynamical phenomena occurring in a modified version of this assembly with a closed top channel.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 January 2016

Abderrahmane Baïri, Cyril Crua, Jean-Gabriel Bauzin and Iken Baïri

The purpose of this paper is to examine the aerodynamical and air mass flow phenomena taking place in the channel of a modified version of one of the well-known Sistan wind mills…

Abstract

Purpose

The purpose of this paper is to examine the aerodynamical and air mass flow phenomena taking place in the channel of a modified version of one of the well-known Sistan wind mills, in order to improve its aerodynamic performance.

Design/methodology/approach

The simulations are done by means of the finite volume method associated to the realizable k-ε turbulence model. The computational domain consists in a rotating sub domain including the wind turbine equipped with nine blades and a fixed sub domain including the rest of the computational domain. Both are connected by means of a sliding mesh interface. Calculations are done for 8×105-4×106 Reynolds number range, corresponding to inlet velocities varying from 2 to 10 m s−1.

Findings

The velocity fields are presented for the stopped and operating turbine (static and dynamic conditions). A careful examination of the aerodynamic phenomena is performed to detect potential vortices that could develop in the central cavity of the active assembly, and then influence the wind turbine’s operation.

Originality/value

The modification proposed in this survey is easy to realize, consisting in covering the top of the entire original assembly that avoids the extraction of a large part of the air mass flow occurring through the open top of the original version. The aerodynamic phenomena occurring across the channel of this large vertical axis wind turbine are substantially different from those of the original version.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 2 of 2