Search results

1 – 2 of 2
Open Access
Article
Publication date: 6 May 2024

Danusa Silva da Costa, Lucely Nogueira dos Santos, Nelson Rosa Ferreira, Katiuchia Pereira Takeuchi and Alessandra Santos Lopes

The aim was not to perform a systematic review but firstly to search in PubMed, Science Direct, Scopus and Web of Science databases on the papers published in the last five years…

Abstract

Purpose

The aim was not to perform a systematic review but firstly to search in PubMed, Science Direct, Scopus and Web of Science databases on the papers published in the last five years using tools for reviewing the statement of preferred information item for systematic reviews without focusing on a randomized analysis and secondly to perform a bibliometric analysis on the properties of films and coatings added of tocopherol for food packaging.

Design/methodology/approach

On January 24, 2022, information was sought on the properties of films and coatings added of tocopherol for use as food packaging published in PubMed, Science Direct, Scopus and Web of Science databases. Further analysis was performed using bibliometric indicators with the VOSviewer tool.

Findings

The searches returned 33 studies concerning the properties of films and coatings added of tocopherol for food packaging, which were analyzed together for a better understanding of the results. Data analysis using the VOSviewer tool allowed a better visualization and exploration of these words and the development of maps that showed the main links between the publications.

Originality/value

In the area of food science and technology, the development of polymers capable of promoting the extension of the shelf life of food products is sought, so the knowledge of the properties is vital for this research area since combining a biodegradable polymeric material with a natural antioxidant active is of great interest for modern society since they associate environmental preservation with food preservation.

Details

British Food Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0007-070X

Keywords

Open Access
Article
Publication date: 22 August 2022

Angela Jadwiga Andrzejewska

Biodegradable polymers are widely used in personalized medical devices or scaffolds for tissue engineering. The manufacturing process should be finished with sterilization…

1240

Abstract

Purpose

Biodegradable polymers are widely used in personalized medical devices or scaffolds for tissue engineering. The manufacturing process should be finished with sterilization procedure. However, it is not clear how the different sterilization methods have an impact on the mechanical strength of the three-dimensional (3D)-printed parts, such as bone models or personalized mechanical devices. This paper aims to present the results of mechanical testing of polylactide-based bone models before and after sterilization.

Design/methodology/approach

Polylactide specimens prepared in fused filament fabrication technology were sterilized with different sterilization methods: ultraviolet (UV) and ethylene oxide. Mechanical properties were determined by testing tensile strength, Young’s modulus and toughness.

Findings

The tensile strength of material after sterilization was significantly higher after ethylene oxide sterilization compared to the UV sterilization, but in both sterilization methods, the specimens characterized lower tensile strength and Young’s modulus when compared to the control. In comparison of toughness results, there was no statistically significant differences. The findings are particularly significant in the perspective of using individual implants, bone grafts and dental guides.

Originality/value

Although fused filament fabrication (FFF) 3D printing devices equipped with UV light sterilization options are available, experimental results of the effect of selected sterilization methods on the mechanical strength of additively manufactured parts have not been described. This paper completes the present state of the art on the problem of sterilization of FFF parts from biodegradable materials.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Access

Only content I have access to

Year

Last 12 months (2)

Content type

1 – 2 of 2