Search results

1 – 10 of 358
Article
Publication date: 29 August 2024

Yizhuo Zhang, Yunfei Zhang, Huiling Yu and Shen Shi

The anomaly detection task for oil and gas pipelines based on acoustic signals faces issues such as background noise coverage, lack of effective features, and small sample sizes…

Abstract

Purpose

The anomaly detection task for oil and gas pipelines based on acoustic signals faces issues such as background noise coverage, lack of effective features, and small sample sizes, resulting in low fault identification accuracy and slow efficiency. The purpose of this paper is to study an accurate and efficient method of pipeline anomaly detection.

Design/methodology/approach

First, to address the impact of background noise on the accuracy of anomaly signals, the adaptive multi-threshold center frequency variational mode decomposition method(AMTCF-VMD) method is used to eliminate strong noise in pipeline signals. Secondly, to address the strong data dependency and loss of local features in the Swin Transformer network, a Hybrid Pyramid ConvNet network with an Agent Attention mechanism is proposed. This compensates for the limitations of CNN’s receptive field and enhances the Swin Transformer’s global contextual feature representation capabilities. Thirdly, to address the sparsity and imbalance of anomaly samples, the SpecAugment and Scaper methods are integrated to enhance the model’s generalization ability.

Findings

In the pipeline anomaly audio and environmental datasets such as ESC-50, the AMTCF-VMD method shows more significant denoising effects compared to wavelet packet decomposition and EMD methods. Additionally, the model achieved 98.7% accuracy on the preprocessed anomaly audio dataset and 99.0% on the ESC-50 dataset.

Originality/value

This paper innovatively proposes and combines the AMTCF-VMD preprocessing method with the Agent-SwinPyramidNet model, addressing noise interference and low accuracy issues in pipeline anomaly detection, and providing strong support for oil and gas pipeline anomaly recognition tasks in high-noise environments.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 14 June 2024

Jie Wu, Kang Wang, Ming Zhang, Leilei Guo, Yongpeng Shen, Mingjie Wang, Jitao Zhang and Vaclav Snasel

When solving the cogging torque of complex electromagnetic structures, such as consequent pole hybrid excitation synchronous (CPHES) machine, traditional methods have a huge…

Abstract

Purpose

When solving the cogging torque of complex electromagnetic structures, such as consequent pole hybrid excitation synchronous (CPHES) machine, traditional methods have a huge computational complexity. The notable feature of CPHES machine is the symmetric range of field-strengthening and field-weakening, but this type of machine is destined to be equipped with a complex electromagnetic structure. The purpose of this paper is to propose a hybrid analysis method to quickly and accurately solve the cogging torque of complex 3D electromagnetic structure, which is applicable to CPHES machine with different magnetic pole shapings.

Design/methodology/approach

In this paper, a hybrid method for calculating the cogging torque of CPHES machine is proposed, which considers three commonly used pole shapings. Firstly, through magnetic field analysis, the complex 3D finite element analysis (FEA) is simplified to 2D field computing. Secondly, the discretization method is used to obtain the distribution of permeance and permeance differential along the circumference of the air-gap, taking into account the effect of slots. Finally, the cogging torque of the whole motor is obtained by using the idea of modular calculation and the symmetry of the rotor structure.

Findings

This method is applicable to different pole shapings. The experimental results show that the proposed method is consistent with 3D FEA and experimental measured results, and the average calculation time is reduced from 8 h to 4 min.

Originality/value

This paper proposes a new concept for calculating cogging torque, which is a hybrid calculation of dimension reduction and discretization modules. Based on magnetic field analysis, the 3D problem is simplified into a 2D issue, reducing computational complexity. Based on the symmetry of the machine structure, a modeling method for discretized analytical models is proposed to calculate the cogging torque of the machine.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 17 September 2024

Yanbiao Zou and Jianhui Yang

This paper aims to propose a lightweight, high-accuracy object detection model designed to enhance seam tracking quality under strong arcs and splashes condition. Simultaneously…

Abstract

Purpose

This paper aims to propose a lightweight, high-accuracy object detection model designed to enhance seam tracking quality under strong arcs and splashes condition. Simultaneously, the model aims to reduce computational costs.

Design/methodology/approach

The lightweight model is constructed based on Single Shot Multibox Detector (SSD). First, a neural architecture search method based on meta-learning and genetic algorithm is introduced to optimize pruning strategy, reducing human intervention and improving efficiency. Additionally, the Alternating Direction Method of Multipliers (ADMM) is used to perform structural pruning on SSD, effectively compressing the model with minimal loss of accuracy.

Findings

Compared to state-of-the-art models, this method better balances feature extraction accuracy and inference speed. Furthermore, seam tracking experiments on this welding robot experimental platform demonstrate that the proposed method exhibits excellent accuracy and robustness in practical applications.

Originality/value

This paper presents an innovative approach that combines ADMM structural pruning and meta-learning-based neural architecture search to significantly enhance the efficiency and performance of the SSD network. This method reduces computational cost while ensuring high detection accuracy, providing a reliable solution for welding robot laser vision systems in practical applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 September 2024

Ahmad Honarjoo, Ehsan Darvishan, Hassan Rezazadeh and Amir Homayoon Kosarieh

This article introduces SigBERT, a novel approach that fine-tunes bidirectional encoder representations from transformers (BERT) for the purpose of distinguishing between intact…

Abstract

Purpose

This article introduces SigBERT, a novel approach that fine-tunes bidirectional encoder representations from transformers (BERT) for the purpose of distinguishing between intact and impaired structures by analyzing vibration signals. Structural health monitoring (SHM) systems are crucial for identifying and locating damage in civil engineering structures. The proposed method aims to improve upon existing methods in terms of cost-effectiveness, accuracy and operational reliability.

Design/methodology/approach

SigBERT employs a fine-tuning process on the BERT model, leveraging its capabilities to effectively analyze time-series data from vibration signals to detect structural damage. This study compares SigBERT's performance with baseline models to demonstrate its superior accuracy and efficiency.

Findings

The experimental results, obtained through the Qatar University grandstand simulator, show that SigBERT outperforms existing models in terms of damage detection accuracy. The method is capable of handling environmental fluctuations and offers high reliability for non-destructive monitoring of structural health. The study mentions the quantifiable results of the study, such as achieving a 99% accuracy rate and an F-1 score of 0.99, to underline the effectiveness of the proposed model.

Originality/value

SigBERT presents a significant advancement in SHM by integrating deep learning with a robust transformer model. The method offers improved performance in both computational efficiency and diagnostic accuracy, making it suitable for real-world operational environments.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 9 September 2024

Weixing Wang, Yixia Chen and Mingwei Lin

Based on the strong feature representation ability of the convolutional neural network (CNN), generous object detection methods in remote sensing (RS) have been proposed one after…

Abstract

Purpose

Based on the strong feature representation ability of the convolutional neural network (CNN), generous object detection methods in remote sensing (RS) have been proposed one after another. However, due to the large variation in scale and the omission of relevant relationships between objects, there are still great challenges for object detection in RS. Most object detection methods fail to take the difficulties of detecting small and medium-sized objects and global context into account. Moreover, inference time and lightness are also major pain points in the field of RS.

Design/methodology/approach

To alleviate the aforementioned problems, this study proposes a novel method for object detection in RS, which is called lightweight object detection with a multi-receptive field and long-range dependency in RS images (MFLD). The multi-receptive field extraction (MRFE) and long-range dependency information extraction (LDIE) modules are put forward.

Findings

To concentrate on the variability of objects in RS, MRFE effectively expands the receptive field by a combination of atrous separable convolutions with different dilated rates. Considering the shortcomings of CNN in extracting global information, LDIE is designed to capture the relationships between objects. Extensive experiments over public datasets in RS images demonstrate that our MFLD method surpasses the state-of-the-art methods. Most of all, on the NWPU VHR-10 dataset, our MFLD method achieves 94.6% mean average precision with 4.08 M model volume.

Originality/value

This paper proposed a method called lightweight object detection with multi-receptive field and long-range dependency in RS images.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 17 September 2024

Kaiying Kang, Jialiang Xie, Xiaohui Liu and Jianxiang Qiu

Experts may adjust their assessments through communication and mutual influence, and this dynamic evolution relies on the spread of internal trust relationships. Due to…

Abstract

Purpose

Experts may adjust their assessments through communication and mutual influence, and this dynamic evolution relies on the spread of internal trust relationships. Due to differences in educational backgrounds and knowledge experiences, trust relationships among experts are often incomplete. To address such issues and reduce decision biases, this paper proposes a probabilistic linguistic multi-attribute group decision consensus model based on an incomplete social trust network (InSTN).

Design/methodology/approach

In this paper, we first define the new trust propagation operators based on the operations of Probability Language Term Set (PLTS) with algebraic t-conorm and t-norm, which are combined with trust aggregation operators to estimate InSTN. The adjustment coefficients are then determined through trust relations to quantify their impact on expert evaluation. Finally, the particle swarm algorithm (PSO) is used to optimize the expert evaluation to meet the consensus threshold.

Findings

This study demonstrates the feasibility of the method through the selection of treatment plans for complex cases. The proposed consensus model exhibits greater robustness and effectiveness compared to traditional methods, mainly due to the effective regulation of trust relations in the decision-making process, which reduces decision bias and inconsistencies.

Originality/value

This paper introduces a novel probabilistic linguistic multi-attribute swarm decision consensus model based on an InSTN. It proposes a redefined trust propagation and aggregation approach to estimate the InSTN. Moreover, the computational efficiency and decision consensus accuracy of the proposed model are enhanced by using PSO optimization.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 26 August 2024

Hong Long and Haibin Duan

The purpose of this paper is to present and implement a task allocation method based on game theory for reconnaissance mission planning of UAVs and USVs system.

Abstract

Purpose

The purpose of this paper is to present and implement a task allocation method based on game theory for reconnaissance mission planning of UAVs and USVs system.

Design/methodology/approach

In this paper, the decision-making framework via game theory of mission planning is constructed. The mission planning of UAVs–USVs is transformed into a potential game optimization problem by introducing a minimum weight vertex cover model. The modified population-based game-theoretic optimizer (MPGTO) is used to improve the efficiency of solving this complex multi-constraint assignment problem.

Findings

Several simulations are carried out to exhibit that the proposed algorithm obtains the superiority on quality and efficiency of mission planning solutions to some existing approaches.

Research limitations/implications

Several simulations are carried out to exhibit that the proposed algorithm obtains the superiority on quality and efficiency of mission planning solutions to some existing approaches.

Practical implications

The proposed framework and algorithm are expected to be applied to complex real scenarios with uncertain targets and heterogeneity.

Originality/value

The decision framework via game theory is proposed for the mission planning problem of UAVs–USVs and a MPGTO with swarm evolution, and the adaptive iteration mechanism is presented for ensuring the efficiency and quality of the solution.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 22 August 2024

Binghai Zhou and Mingda Wen

Owing to the finite nature of the boundary of the line (BOL), the conventional method, involving the strong matching of single-variety parts with storage locations at the…

Abstract

Purpose

Owing to the finite nature of the boundary of the line (BOL), the conventional method, involving the strong matching of single-variety parts with storage locations at the periphery of the line, proves insufficient for mixed-model assembly lines (MMAL). Consequently, this paper aims to introduce a material distribution scheduling problem considering the shared storage area (MDSPSSA). To address the inherent trade-off requirement of achieving both just-in-time efficiency and energy savings, a mathematical model is developed with the bi-objectives of minimizing line-side inventory and energy consumption.

Design/methodology/approach

A nondominated and multipopulation multiobjective grasshopper optimization algorithm (NM-MOGOA) is proposed to address the medium-to-large-scale problem associated with MDSPSSA. This algorithm combines elements from the grasshopper optimization algorithm and the nondominated sorting genetic algorithm-II. The multipopulation and coevolutionary strategy, chaotic mapping and two further optimization operators are used to enhance the overall solution quality.

Findings

Finally, the algorithm performance is evaluated by comparing NM-MOGOA with multi-objective grey wolf optimizer, multiobjective equilibrium optimizer and multi-objective atomic orbital search. The experimental findings substantiate the efficacy of NM-MOGOA, demonstrating its promise as a robust solution when confronted with the challenges posed by the MDSPSSA in MMALs.

Originality/value

The material distribution system devised in this paper takes into account the establishment of shared material storage areas between adjacent workstations. It permits the undifferentiated storage of various part types in fixed BOL areas. Concurrently, the innovative NM-MOGOA algorithm serves as the core of the system, supporting the formulation of scheduling plans.

Article
Publication date: 30 August 2024

Lei Ren, Guolin Cheng, Wei Chen, Pei Li and Zhenhe Wang

This paper aims to explore recent advances in drift compensation algorithms for Electronic Nose (E-nose) technology and addresses sensor drift challenges through offline, online…

Abstract

Purpose

This paper aims to explore recent advances in drift compensation algorithms for Electronic Nose (E-nose) technology and addresses sensor drift challenges through offline, online and neural network-based strategies. It offers a comprehensive review and covers causes of drift, compensation methods and future directions. This synthesis provides insights for enhancing the reliability and effectiveness of E-nose systems in drift issues.

Design/methodology/approach

The article adopts a comprehensive approach and systematically explores the causes of sensor drift in E-nose systems and proposes various compensation strategies. It covers both offline and online compensation methods, as well as neural network-based approaches, and provides a holistic view of the available techniques.

Findings

The article provides a comprehensive overview of drift compensation algorithms for E-nose technology and consolidates recent research insights. It addresses challenges like sensor calibration and algorithm complexity, while discussing future directions. Readers gain an understanding of the current state-of-the-art and emerging trends in electronic olfaction.

Originality/value

This article presents a comprehensive review of the latest advancements in drift compensation algorithms for electronic nose technology and covers the causes of drift, offline drift compensation algorithms, online drift compensation algorithms and neural network drift compensation algorithms. The article also summarizes and discusses the current challenges and future directions of drift compensation algorithms in electronic nose systems.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 3 September 2024

Hung Nguyen, Thai Huynh, Nha Tran and Toan Nguyen

Visually impaired people usually struggle with doing daily tasks due to a lack of visual cues. For image captioning assistive applications, most applications require an Internet…

Abstract

Purpose

Visually impaired people usually struggle with doing daily tasks due to a lack of visual cues. For image captioning assistive applications, most applications require an Internet connection for the image captioning generation function to work properly. In this study, we developed MyUEVision, an application that assists visually impaired people by generating image captions that can work with and without the Internet. This work also involves reviewing some image captioning models for this application.

Design/methodology/approach

The author has selected and experimented with three image captioning models for online models and two image captioning models for offline models. The user experience (UX) design was designed based on the problems faced by visually impaired users when using mobile applications. The application is developed for the Android platform, and the offline model is integrated into the application for the image captioning generation function to work offline.

Findings

After conducting experiments for selecting online and offline models, ExpansionNet V2 is chosen for the online model and VGG16 + long short-term memory (LSTM) is chosen for the offline model. The application is then developed and assessed, and the results show that the application can generate image captions with or without the Internet, providing the best result when having an Internet connection, and the image is captured in good lighting with a few objects.

Originality/value

MyUEVision stands out for its both online and offline functionality. This approach ensures the image captioning generator works with or without the Internet, setting it apart as a unique solution to address the needs of visually impaired individuals.

Details

Journal of Enabling Technologies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-6263

Keywords

1 – 10 of 358