Search results

1 – 2 of 2
Article
Publication date: 22 August 2024

Binghai Zhou and Mingda Wen

Owing to the finite nature of the boundary of the line (BOL), the conventional method, involving the strong matching of single-variety parts with storage locations at the…

Abstract

Purpose

Owing to the finite nature of the boundary of the line (BOL), the conventional method, involving the strong matching of single-variety parts with storage locations at the periphery of the line, proves insufficient for mixed-model assembly lines (MMAL). Consequently, this paper aims to introduce a material distribution scheduling problem considering the shared storage area (MDSPSSA). To address the inherent trade-off requirement of achieving both just-in-time efficiency and energy savings, a mathematical model is developed with the bi-objectives of minimizing line-side inventory and energy consumption.

Design/methodology/approach

A nondominated and multipopulation multiobjective grasshopper optimization algorithm (NM-MOGOA) is proposed to address the medium-to-large-scale problem associated with MDSPSSA. This algorithm combines elements from the grasshopper optimization algorithm and the nondominated sorting genetic algorithm-II. The multipopulation and coevolutionary strategy, chaotic mapping and two further optimization operators are used to enhance the overall solution quality.

Findings

Finally, the algorithm performance is evaluated by comparing NM-MOGOA with multi-objective grey wolf optimizer, multiobjective equilibrium optimizer and multi-objective atomic orbital search. The experimental findings substantiate the efficacy of NM-MOGOA, demonstrating its promise as a robust solution when confronted with the challenges posed by the MDSPSSA in MMALs.

Originality/value

The material distribution system devised in this paper takes into account the establishment of shared material storage areas between adjacent workstations. It permits the undifferentiated storage of various part types in fixed BOL areas. Concurrently, the innovative NM-MOGOA algorithm serves as the core of the system, supporting the formulation of scheduling plans.

Article
Publication date: 26 August 2024

Hong Long and Haibin Duan

The purpose of this paper is to present and implement a task allocation method based on game theory for reconnaissance mission planning of UAVs and USVs system.

Abstract

Purpose

The purpose of this paper is to present and implement a task allocation method based on game theory for reconnaissance mission planning of UAVs and USVs system.

Design/methodology/approach

In this paper, the decision-making framework via game theory of mission planning is constructed. The mission planning of UAVs–USVs is transformed into a potential game optimization problem by introducing a minimum weight vertex cover model. The modified population-based game-theoretic optimizer (MPGTO) is used to improve the efficiency of solving this complex multi-constraint assignment problem.

Findings

Several simulations are carried out to exhibit that the proposed algorithm obtains the superiority on quality and efficiency of mission planning solutions to some existing approaches.

Research limitations/implications

Several simulations are carried out to exhibit that the proposed algorithm obtains the superiority on quality and efficiency of mission planning solutions to some existing approaches.

Practical implications

The proposed framework and algorithm are expected to be applied to complex real scenarios with uncertain targets and heterogeneity.

Originality/value

The decision framework via game theory is proposed for the mission planning problem of UAVs–USVs and a MPGTO with swarm evolution, and the adaptive iteration mechanism is presented for ensuring the efficiency and quality of the solution.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 2 of 2