Search results

1 – 1 of 1
Article
Publication date: 15 August 2008

Juozas Padgurskas, Raimundas Rukuiza, Arunas Amulevicius, Ceslovas Sipavicius, Kestutis Mazeika, Rimantas Davidonis, Antanas Daugvila and Henrikas Cesiulis

The purpose of this paper is to investigate the influence of fluor‐oligomeric coat on the mechanical properties of steel surface, as well as the chemical interaction of…

Abstract

Purpose

The purpose of this paper is to investigate the influence of fluor‐oligomeric coat on the mechanical properties of steel surface, as well as the chemical interaction of fluor‐oligomeric films with surface and theoretical‐phenomenological interpretation of structural processes in friction surface.

Design/methodology/approach

Four groups of specimens were studied: two groups of specimens without any wear tests – initial steel specimen as control version and a specimen which was ten times coated by fluor‐oligomer, and two groups of specimens, which were tribologically tested for one million cycles – without any coating and coated specimens. Closed kinematical profile scheme roller‐roller of steel 45 was chosen for tribological tests. Wear of friction surface after those tests was investigated. The interaction between fluor‐oligomer and iron was studied by means of Mössbauer spectroscopy. The micro‐hardness of matrix was also measured.

Findings

Affecting the surface of steel by the fluor‐oligomer and friction produces the complicated processes of carbide decay and formation occur. The mechanisms are found which are related to the weakening of chemical bond in steel during the absorption, to the generation of microscopic ruptures, to the decrease (30‐50 per cent) of the amount of carbides and its increase during the friction (up to 50 per cent). The mechanical effect which causes the regeneration of carbides during friction is revealed. Tribological efficiency of fluor‐oligomeric coats (five times lower wear of coated specimens) is explained by the balance of three processes – the softening of matrix during adsorption, the detention of dislocations, and formation of hard particles in the matrix.

Originality/value

The complex mechanism of the increase of wear resistance is explained by filling of ductile matrix with carbide particles.

Details

Industrial Lubrication and Tribology, vol. 60 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 1 of 1