Search results

1 – 10 of 20
Open Access
Article
Publication date: 19 March 2024

Zhenlong Peng, Aowei Han, Chenlin Wang, Hongru Jin and Xiangyu Zhang

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC…

Abstract

Purpose

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC affects the in-service functional performance of advanced aerospace materials remains obscure. This limits their industrial application and requires a deeper understanding.

Design/methodology/approach

The surface integrity and in-service functional performance of advanced aerospace materials are important guarantees for safety and stability in the aerospace industry. For advanced aerospace materials, which are difficult-to-machine, conventional machining processes cannot meet the requirements of high in-service functional performance owing to rapid tool wear, low processing efficiency and high cutting forces and temperatures in the cutting area during machining.

Findings

To address this literature gap, this study is focused on the quantitative evaluation of the in-service functional performance (fatigue performance, wear resistance and corrosion resistance) of advanced aerospace materials. First, the characteristics and usage background of advanced aerospace materials are elaborated in detail. Second, the improved effect of UVC on in-service functional performance is summarized. We have also explored the unique advantages of UVC during the processing of advanced aerospace materials. Finally, in response to some of the limitations of UVC, future development directions are proposed, including improvements in ultrasound systems, upgrades in ultrasound processing objects and theoretical breakthroughs in in-service functional performance.

Originality/value

This study provides insights into the optimization of machining processes to improve the in-service functional performance of advanced aviation materials, particularly the use of UVC and its unique process advantages.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 29 August 2023

Qingfeng Xu, Hèrm Hofmeyer and Johan Maljaars

Simulations exist for the prediction of the behaviour of building structural systems under fire, including two-way coupled fire-structure interaction. However, these simulations…

Abstract

Purpose

Simulations exist for the prediction of the behaviour of building structural systems under fire, including two-way coupled fire-structure interaction. However, these simulations do not include detailed models of the connections, whereas these connections may impact the overall behaviour of the structure. Therefore, this paper proposes a two-scale method to include screw connections.

Design/methodology/approach

The two-scale method consists of (a) a global-scale model that models the overall structural system and (b) a small-scale model to describe a screw connection. Components in the global-scale model are connected by a spring element instead of a modelled screw, and the stiffness of this spring element is predicted by the small-scale model, updated at each load step. For computational efficiency, the small-scale model uses a proprietary technique to model the behaviour of the threads, verified by simulations that model the complete thread geometry, and validated by existing pull-out experiments. For four screw failure modes, load-deformation behaviour and failure predictions of the two-scale method are verified by a detailed system model. Additionally, the two-scale method is validated for a combined load case by existing experiments, and demonstrated for different temperatures. Finally, the two-scale method is illustrated as part of a two-way coupled fire-structure simulation.

Findings

It was shown that proprietary ”threaded connection interaction” can predict thread relevant failure modes, i.e. thread failure, shank tension failure, and pull-out. For bearing, shear, tension, and pull-out failure, load-deformation behaviour and failure predictions of the two-scale method correspond with the detailed system model and Eurocode predictions. Related to combined load cases, for a variety of experiments a good correlation has been found between experimental and simulation results, however, pull-out simulations were shown to be inconsistent.

Research limitations/implications

More research is needed before the two-scale method can be used under all conditions. This relates to the failure criteria for pull-out, combined load cases, and temperature loads.

Originality/value

The two-scale method bridges the existing very detailed small-scale screw models with present global-scale structural models, that in the best case only use springs. It shows to be insightful, for it contains a functional separation of scales, revealing their relationships, and it is computationally efficient as it allows for distributed computing. Furthermore, local small-scale non-convergence (e.g. a screw failing) can be handled without convergence problems in the global-scale structural model.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 31 January 2024

Maha AlSabbagh

This study aims to quantify sectoral energy and carbon intensity, revisit the validity of the Environmental Kuznets Curve (EKC) and explore the relationship between economic…

Abstract

Purpose

This study aims to quantify sectoral energy and carbon intensity, revisit the validity of the Environmental Kuznets Curve (EKC) and explore the relationship between economic diversification and CO2 emissions in Bahrain.

Design/methodology/approach

Three stages were followed to understand the linkages between sectoral economic growth, energy consumption and CO2 emissions in Bahrain. Sectoral energy and carbon intensity were calculated, time series data trends were analyzed and two econometric models were built and analyzed using the autoregressive distributed lag method and time series data for the period 1980–2019.

Findings

The results of the analysis suggest that energy and carbon intensity in Bahrain’s industrial sector is higher than those of its services and agricultural sectors. The EKC was found to be invalid for Bahrain, where economic growth is still coupled with CO2 emissions. Whereas CO2 emissions have increased with growth in the manufacturing, and real estate subsectors, the emissions have decreased with growth in the hospitability, transportation and communications subsectors. These results indicate that economic diversification, specifically of the services sector, is aligned with Bahrain’s carbon neutrality target. However, less energy-intensive industries, such as recycling-based industries, are needed to counter the environmental impacts of economic growth.

Originality/value

The impacts of economic diversification on energy consumption and CO2 emissions in the Gulf Cooperation Council petroleum countries have rarely been explored. Findings from this study contribute to informing economic and environment-related policymaking in Bahrain.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

Open Access
Article
Publication date: 21 April 2023

Ehsan Shekarian, Anupama Prashar, Jukka Majava, Iqra Sadaf Khan, Sayed Mohammad Ayati and Ilkka Sillanpää

Recently, interest in sustainability has grown globally in the heavy vehicle and equipment industry (HVEI). However, this industry's complexity poses a challenge to the…

2233

Abstract

Purpose

Recently, interest in sustainability has grown globally in the heavy vehicle and equipment industry (HVEI). However, this industry's complexity poses a challenge to the implementation of generic sustainable supply chain management (SSCM) practices. This study aims to identify SSCM's barriers, practices and performance (BPP) indicators in the HVEI context.

Design/methodology/approach

The results are derived from case studies of four multinational manufacturers. Within-case and cross-case analyses were conducted to categorise the SSCM BPP indicators that are unique to HVEI supply chains.

Findings

This study's analysis revealed that supply chain cost implications and a deficient information flow between focal firms and supply chain partners are the key barriers to SSCM in the HVEI. This analysis also revealed a set of policies, programmes and procedures that manufacturers have adopted to address SSCM barriers. The most common SSCM performance indicators included eco-portfolio sales to assess economic performance, health and safety indicators for social sustainability and carbon- and energy-related measures for environmental sustainability.

Practical implications

The insights can help HVEI firms understand and overcome the typical SSCM barriers in their industry and develop, deploy and optimise their SSCM strategies and practices. Managers can use this knowledge to identify appropriate mechanisms with which to accelerate their transition into a sustainable business and effectively measure performance outcomes.

Originality/value

The extant SSCM literature has focused on the light vehicle industry, and it has lacked a concrete examination of HVEI supply chains' sustainability BPP. This study develops a framework that simultaneously analyses SSCM BPP in the HVEI.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Open Access
Article
Publication date: 2 May 2023

Surajit Bag

This study examines the effect of resources (e.g. tangible resources, human skills and intangible resources) that are utilized as a bundle of standard practices on sustainable net…

2303

Abstract

Purpose

This study examines the effect of resources (e.g. tangible resources, human skills and intangible resources) that are utilized as a bundle of standard practices on sustainable net zero economy implementation and their further impact on financial, environmental and social performance among small- and medium-level enterprises in business markets. The moderating effect of big data analytical intelligence is also examined.

Design/methodology/approach

The samples were selected from the paper and chemical manufacturing industries of South Africa. The data analysis was performed using variance-based structural equation modeling.

Findings

The results show that tangible resources, human skills and intangible resources positively influence sustainable net zero economy adoption. However, intangible resources have a more substantial influence on sustainable net zero economy implementation. This shows that adopting a sustainable net zero economy depends more on a bundle of common practices, including sustainability culture, employee training and knowledge management, and managers must create the necessary action plans accordingly. In addition, sustainable net zero economy adoption positively influences financial performance, environmental performance and social performance. However, sustainable net zero economy adoption has a more substantial influence on social performance. Therefore, implementing a net zero economy will be more advantageous to society and to local communities.

Practical implications

To achieve a sustainable net zero economy, managers should recognize the significance of resource management. While managing tangible resources and human skills is crucial, intangible resources, such as culture and organizational learning, require more attention. Additionally, the ability of small- and medium-sized enterprises to explore, store, share and apply knowledge is crucial to achieving net zero. Therefore, managers should make use of Industry 4.0-based digital technologies for effective knowledge management. Moreover, net zero economy adoption can significantly enhance societal performance. Hence, while making budgeting decisions, managers must consider the potential of the firm's resources to improve social performance.

Originality/value

This study is the first to investigate the impact of human skills and tangible and intangible resources on the adoption of a sustainable net zero economy by companies, using empirical evidence. The research expands on the concept of the practice-based view (PBV) in the implementation of sustainable net zero economies by small- and medium-sized business-to-business enterprises.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Open Access
Article
Publication date: 14 November 2022

Johnson Adetooto, Abimbola Windapo and Francesco Pomponi

This study aims to evaluate the perception of the local experts and end users on the drivers, barriers and strategies to the use of alternative building technologies (ABTs), with…

2723

Abstract

Purpose

This study aims to evaluate the perception of the local experts and end users on the drivers, barriers and strategies to the use of alternative building technologies (ABTs), with a focus on sandbag building technologies (SBTs) in the provision of sustainable housing in South Africa towards improving the public's understanding of SBTs.

Design/methodology/approach

This research adopted a qualitative approach that used focus group meetings as the primary data collection method for this study. This study's focus group participants comprised ABT experts and end users of ABT houses in South Africa who were selected using a convenient sampling technique. The data were recorded, transcribed verbatim and analysed using NVivo 11 software.

Findings

This study found that the perceived drivers to using ABTs such as SBT comprise sustainability, affordability, job creation potentials, fire-resistant and earthquake resistance. This study revealed strategies for the SBTs, including awareness, building sandbag prototypes across cities and training.

Practical implications

This study's findings have practical implications for the practice and praxis of ABT implementation and uptake in South Africa. This study provides a framework for broadening the worldwide understanding of use and uptake of SBTs to provide sustainable and affordable housing.

Originality/value

This study adds significantly to the limited body of knowledge on ABTs, focusing on sandbag houses. Consequently, the findings provide policymakers with information on the expert and end-user perspectives on the barriers and strategies to using ABTs.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 19 March 2024

Freya Higgins-Desbiolles

This viewpoint engages with Jem Bendell’s deep adaptation framework which was developed as a response to the threat of collapse. Proponents of deep adaptation argue that societal…

Abstract

Purpose

This viewpoint engages with Jem Bendell’s deep adaptation framework which was developed as a response to the threat of collapse. Proponents of deep adaptation argue that societal collapse is either likely, inevitable or already underway. The deep adaptation framework is employed as a tool to contemplate the necessary adaptation of tourism development and planning in a context of polycrisis leading to collapse.

Design/methodology/approach

This is a conceptual viewpoint article that is built on deductive analysis of recent events, reports and scientific findings. It employs the deep adaptation framework to analyse possible alternative tourism futures in the face of the threat of collapse.

Findings

Bendell’s framework included four aspects of response to the recognition of the threat of collapse: resilience, relinquishment, restoration and reconciliation. In this work, the deep adaptation framework is employed to analyse what a deep adaptation approach to tourism might offer for efforts in securing optimal social and ecological outcomes. Findings highlight damaging activities that we should relinquish, more resilient approaches that communities could encourage and restorative practices such as rewilding and pluriversal economies as protective measures. This work recommends a precautionary approach to transform tourism education, research and practice in order to secure better tourism futures.

Originality/value

This work is novel in engaging with the threat of future collapse and in using the deep adaptation framework to consider alternative tourism futures.

Details

Journal of Tourism Futures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2055-5911

Keywords

Open Access
Article
Publication date: 7 May 2024

Mohammed Y. Fattah, Mahmood R. Mahmood and Mohammed F. Aswad

The main objective of the present research is to investigate the benefits of using geogrid reinforcement in minimizing the rate of deterioration of ballasted rail track geometry…

Abstract

Purpose

The main objective of the present research is to investigate the benefits of using geogrid reinforcement in minimizing the rate of deterioration of ballasted rail track geometry resting on soft clay and to explore the effect of load amplitude, load frequency, presence of geogrid layer in ballast layer and ballast layer thickness on the behavior of track system. These variables are studied both experimentally and numerically. This paper examines the effect of geogrid reinforced ballast laying on a layer of clayey soil as a subgrade layer, where a half full scale railway tests are conducted as well as a theoretical analysis is performed.

Design/methodology/approach

The experimental tests work consists of laboratory model tests to investigate the reduction in the compressibility and stress distribution induced in soft clay under a ballast railway reinforced by geogrid reinforcement subjected to dynamic load. Experimental model based on an approximate half scale for general rail track engineering practice is adopted in this study which is used in Iraqi railways. The investigated parameters are load amplitude, load frequency and presence of geogrid reinforcement layer. A half full-scale railway was constructed for carrying out the tests, which consists of two rails 800 mm in length with three wooden sleepers (900 mm × 90 mm × 90 mm). The ballast was overlying 500 mm thick clay layer. The tests were carried out with and without geogrid reinforcement, the tests were carried out in a well tied steel box of 1.5 m length × 1 m width × 1 m height. A series of laboratory tests were conducted to investigate the response of the ballast and the clay layers where the ballast was reinforced by a geogrid. Settlement in ballast and clay, was measured in reinforced and unreinforced ballast cases. In addition to the laboratory tests, the application of numerical analysis was made by using the finite element program PLAXIS 3D 2013.

Findings

It was concluded that the settlement increased with increasing the simulated train load amplitude, there is a sharp increase in settlement up to the cycle 500 and after that, there is a gradual increase to level out between, 2,500 and 4,500 cycles depending on the load frequency. There is a little increase in the induced settlement when the load amplitude increased from 0.5 to 1 ton, but it is higher when the load amplitude increased to 2 ton, the increase in settlement depends on the geogrid existence and the other studied parameters. Both experimental and numerical results showed the same behavior. The effect of load frequency on the settlement ratio is almost constant after 500 cycles. In general, for reinforced cases, the effect of load frequency on the settlement ratio is very small ranging between 0.5 and 2% compared with the unreinforced case.

Originality/value

Increasing the ballast layer thickness from 20 cm to 30 cm leads to decrease the settlement by about 50%. This ascertains the efficiency of ballast in spreading the waves induced by the track.

Details

Railway Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 5 April 2024

Kai Rüdele, Matthias Wolf and Christian Ramsauer

Improving productivity and efficiency has always been crucial for industrial companies to remain competitive. In recent years, the topic of environmental impact has become…

Abstract

Purpose

Improving productivity and efficiency has always been crucial for industrial companies to remain competitive. In recent years, the topic of environmental impact has become increasingly important. Published research indicates that environmental and economic goals can enforce or rival each other. However, few papers have been published that address the interaction and integration of these two goals.

Design/methodology/approach

In this paper, we identify both, synergies and trade-offs based on a systematic review incorporating 66 publications issued between 1992 and 2021. We analyze, quantify and cluster examples of conjunctions of ecological and economic measures and thereby develop a framework for the combined improvement of performance and environmental compatibility.

Findings

Our findings indicate an increased significance of a combined consideration of these two dimensions of sustainability. We found that cases where enforcing synergies between economic and ecological effects were identified are by far more frequent than reports on trade-offs. For the individual categories, cost savings are uniformly considered as the most important economic aspect while, energy savings appear to be marginally more relevant than waste reduction in terms of environmental aspects.

Originality/value

No previous literature review provides a comparable graphical treatment of synergies and trade-offs between cost savings and ecological effects. For the first time, identified measures were classified in a 3 × 3 table considering type and principle.

Details

Management of Environmental Quality: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1477-7835

Keywords

Open Access
Article
Publication date: 26 April 2024

Sultan Mohammed Althahban, Mostafa Nowier, Islam El-Sagheer, Amr Abd-Elhady, Hossam Sallam and Ramy Reda

This paper comprehensively addresses the influence of chopped strand mat glass fiber-reinforced polymer (GFRP) patch configurations such as geometry, dimensions, position and the…

Abstract

Purpose

This paper comprehensively addresses the influence of chopped strand mat glass fiber-reinforced polymer (GFRP) patch configurations such as geometry, dimensions, position and the number of layers of patches, whether a single or double patch is used and how well debonding the area under the patch improves the strength of the cracked aluminum plates with different crack lengths.

Design/methodology/approach

Single-edge cracked aluminum specimens of 150 mm in length and 50 mm in width were tested using the tensile test. The cracked aluminum specimens were then repaired using GFRP patches with various configurations. A three-dimensional (3D) finite element method (FEM) was adopted to simulate the repaired cracked aluminum plates using composite patches to obtain the stress intensity factor (SIF). The numerical modeling and validation of ABAQUS software and the contour integral method for SIF calculations provide a valuable tool for further investigation and design optimization.

Findings

The width of the GFRP patches affected the efficiency of the rehabilitated cracked aluminum plate. Increasing patch width WP from 5 mm to 15 mm increases the peak load by 9.7 and 17.5%, respectively, if compared with the specimen without the patch. The efficiency of the GFRP patch in reducing the SIF increased as the number of layers increased, i.e. the maximum load was enhanced by 5%.

Originality/value

This study assessed repairing metallic structures using the chopped strand mat GFRP. Furthermore, it demonstrated the superiority of rectangular patches over semicircular ones, along with the benefit of using double patches for out-of-plane bending prevention and it emphasizes the detrimental effect of defects in the bonding area between the patch and the cracked component. This underlines the importance of proper surface preparation and bonding techniques for successful repair.

Graphical abstract

Details

Frontiers in Engineering and Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-2499

Keywords

Access

Only content I have access to

Year

Content type

Earlycite article (20)
1 – 10 of 20