Search results

1 – 3 of 3
Book part
Publication date: 6 May 2024

Ahmed Helmy Mohamed Gomaa Mohamed

The current study aims to analyze the role of International Federation of Accountants (IFAC) in sustainability issues and its impact on the attitude of practitioners (auditors) in…

Abstract

The current study aims to analyze the role of International Federation of Accountants (IFAC) in sustainability issues and its impact on the attitude of practitioners (auditors) in industrial companies. The current study relies on the analytical method, one of the tools of the inductive approach, by examining the literature of researchers, international and local organizations, publications, series, alerts, and topics dealt with by the IFAC, as well as reviewing studies, theoretical and applied research, periodicals, books, and statistics. And specialized publications for this subject, which is related to other sciences – such as – environmental science, economic, and political sciences. The study reached many results, the most important of which are: (1) The first half of the current decade has seen high interest from the IFAC, has led to the issuance of International Auditing and Assurance Standards Board (IAASB) international standard on assurance engagements 3410, (GHG) Statements. (2) Sustainability has become important to a growing number of enterprises, and may have a significant influence, in certain cases, the financial statements, also became the sustainability of the topics under increasing attention from users of financial statements. Thus, the financial statements will need a practitioner to take into consideration sustainability issues and a private greenhouse gas when auditing the financial statements. This study is distinguished by analyzing the role of the IFAC and the IAASB for the period from 1998 to 2023 regarding sustainability issues.

Details

The Emerald Handbook of Ethical Finance and Corporate Social Responsibility
Type: Book
ISBN: 978-1-80455-406-7

Keywords

Article
Publication date: 4 April 2023

Chinedu Chinakwe, Adekunle Adelaja, Michael Akinseloyin and Olabode Thomas Olakoyejo

Inclination angle has been reported to have an enhancing effect on the thermal-hydraulic characteristics and entropy of some thermal systems. Therefore, this paper aims to…

Abstract

Purpose

Inclination angle has been reported to have an enhancing effect on the thermal-hydraulic characteristics and entropy of some thermal systems. Therefore, this paper aims to numerically investigate the effects of inclination angle, volume concentration and Reynolds number on the thermal and hydraulic characteristics and entropy generation rates of water-based Al2O3 nanofluids through a smooth circular aluminum pipe in a turbulent flow.

Design/methodology/approach

A constant heat flux of 2,000 Watts is applied to the circular surface of the tube. Reynolds number is varied between 4,000 and 20,000 for different volume concentrations of alumina nanoparticles of 0.5%, 1.0% and 2.0% for tube inclination angles of ±90o, ±60o, ±45o, ±30o and 0o, respectively. The simulation is performed in an ANSYS Fluent environment using the realizable kinetic energy–epsilon turbulent model.

Findings

Results show that +45o tube orientation possesses the largest thermal deviations of 0.006% for 0.5% and 1.0% vol. concentrations for Reynolds numbers 4,000 and 12,000. −45o gives a maximum pressure deviation of −0.06% for the same condition. The heat transfer coefficient and pressure drop give maximum deviations of −0.35% and −0.39%, respectively, for 2.0% vol. concentration for Reynolds number of 20,000 and angle ±90o. A 95%–99.8% and 95%–98% increase in the heat transfer and total entropy generation rates, respectively, is observed for 2.0% volume concentration as tube orientation changes from the horizontal position upward or downward.

Originality/value

Research investigating the effect of inclination angle on thermal-hydraulic performance and entropy generation rates in-tube turbulent flow of nanofluid is very scarce in the literature.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 15 April 2024

Ann Wairimu Mburu, David Githinji Njuguna, Fredrick Musieba, Charles Nzila, Virginia Kimani and Alice Wangai

The purpose of this paper is to investigate the efficacy of bacterial exopolysaccharides (Eps) in reactive black 5 (RB5) textile dye wastewater bioremediation.

Abstract

Purpose

The purpose of this paper is to investigate the efficacy of bacterial exopolysaccharides (Eps) in reactive black 5 (RB5) textile dye wastewater bioremediation.

Design/methodology/approach

The Eps were produced by bacteria isolated from cotton gin trash soils collected from different cotton-growing regions in Kenya for comparison purposes. A broth medium reconstituted using molasses was assessed for its capacity to produce the Eps. RB5 textile dye wastewater was optimized for dye removal under different temperatures, times and molasses concentrations. Dye removal was studied by Lovibond-Day Light Comparator, UV–Vis spectrophotometer and FTIR.

Findings

It was found that cotton gin trash soils contained Eps-producing bacteria. Three of the Eps studied were found to have the capacity to remove at least 80% of the dye from the wastewater.

Research limitations/implications

This research did not assess the efficacy of the RB5 dye removal from the wastewater by mixtures of the Eps.

Practical implications

Bioremediation of textile dye wastewater with Eps produced by bacteria cultured from cotton gin trash soil is significant because it will offer an effective and cleaner alternative to the chemical coagulants.

Social implications

Alternative treatment of textile wastewater with the Eps would result in safer water being released into the water bodies as opposed to the chemically treated wastewater that contains remnant chemicals.

Originality/value

Research on the use of Eps produced by bacteria isolated from cotton gin trash soils for removal of RB5 dye from textile wastewater has not been done before.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 3 of 3