Search results

1 – 2 of 2
Article
Publication date: 8 May 2024

Hossa F. Al-Shareef, Ahmed M. Yousif, Rafaat Eleisawy, Ammar M. Mahmoud and Hamada Abdelwahab

This paper aims to prepare alkyd protective paint by using modified alkyd with 3,6-dichloro benzo[b]thiophene-2-carbonyl glutamic acid (DCBTGA) as a source of dicarboxylic acid…

Abstract

Purpose

This paper aims to prepare alkyd protective paint by using modified alkyd with 3,6-dichloro benzo[b]thiophene-2-carbonyl glutamic acid (DCBTGA) as a source of dicarboxylic acid and evaluating their anticorrosive properties compared with those of unmodified alkyd coatings for steel protection.

Design/methodology/approach

Short, medium and long oil alkyds, which represented as (0, 10, 20 and 30% excess-OH) according to the resin constants (Patton, 1962), were prepared through a condensation polymerization reaction via a solvent process in a one-step reaction. The modification of alkyd was carried out by using DCBTGA as a source of dicarboxylic acid. The prepared modified alkyd was confirmed by IR and NMR spectral analysis. The physicochemical, mechanical and anticorrosion performance properties of the considered modified coating formulations against unmodified blank coating were studied to confirm their application efficiency.

Findings

The best results in terms of physicochemical, mechanical and anticorrosion performance properties were found according to the following of this order activity: 30 replacements of the modifier (DCBTGA) for each hydroxyl continent were 30% Ex-OH > 20% Ex-OH > 10% Ex-OH > 0% Ex-OH, compared with that formulation containing unmodified alkyd, especially with increasing the modifier percent.

Originality/value

The prepared DCBTGA-modified resins can be used for different applications based on the type of alkyd and application.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 May 2023

Gözde Konuk Ege, Özge Akay and Hüseyin Yüce

This study aims to investigate the ammonia-sensing performance of polyaniline/polyethylene oxide (PANI/PEO) and polyaniline/polyethylene oxide/zinc oxide (PANI/PEO-ZnO) composite…

Abstract

Purpose

This study aims to investigate the ammonia-sensing performance of polyaniline/polyethylene oxide (PANI/PEO) and polyaniline/polyethylene oxide/zinc oxide (PANI/PEO-ZnO) composite nanofibers at room temperature.

Design/methodology/approach

Gas sensor structures were fabricated using microfabrication techniques. First, onto the SiO2 wafer, gold electrodes were fabricated via thermal evaporation. PANI/PEO nanofibers were produced by the electrospinning method, and the ZnO layer was deposited by using radio frequency (RF) magnetron sputtering on the electrospun nanofibers as a sensing layer. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray diffraction were performed to characterize the analysis of nanofibers. After all, gas sensing analysis of PANI/PEO and PANI/PEO/ZnO nanofibers was conducted using an experimental setup at room temperature conditions. Furthermore, the impact of humidity (17%–90% RH) on the sensor resistance was actively investigated.

Findings

FTIR analysis confirms the presence of functional groups of PANI, PEO and ZnO in nanofiber structure. SEM micrographs demonstrate beads-free, thinner and smooth nanofibers with ZnO contribution to electrospun PANI/PEO nanofibers. Moreover, according to the gas sensing results, the PANI/PEO nanofibers exhibit 115 s and 457 s response time and recovery time, respectively. However, the PANI/PEO/ZnO nanofibers exhibit 245 s and 153 s response time and recovery time, respectively. PANI/PEO/MOx composite nanofibers ensure stability to the NH3 gas owing to the high surface/volume ratio and decrease in the humidity dependence of gas sensors, making gas sensors more stable to the environment.

Originality/value

In this study, ZnO was deposited via RF magnetron sputtering techniques on PANI/PEO nanofibers as a different approach instead of in situ polymerization to investigate and enhance the sensor response and recovery time of the PANI/PEO/ZnO and PANI/PEO composite nanofibers to ammonia. These results indicated that ZnO can enhance the sensing properties of conductive polymer-based resistive sensors.

Details

Microelectronics International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 2 of 2