Search results

1 – 4 of 4
Article
Publication date: 30 May 2024

Baharak Hooshyarfarzin, Mostafa Abbaszadeh and Mehdi Dehghan

The main aim of the current paper is to find a numerical plan for hydraulic fracturing problem with application in extracting natural gases and oil.

Abstract

Purpose

The main aim of the current paper is to find a numerical plan for hydraulic fracturing problem with application in extracting natural gases and oil.

Design/methodology/approach

First, time discretization is accomplished via Crank-Nicolson and semi-implicit techniques. At the second step, a high-order finite element method using quadratic triangular elements is proposed to derive the spatial discretization. The efficiency and time consuming of both obtained schemes will be investigated. In addition to the popular uniform mesh refinement strategy, an adaptive mesh refinement strategy will be employed to reduce computational costs.

Findings

Numerical results show a good agreement between the two schemes as well as the efficiency of the employed techniques to capture acceptable patterns of the model. In central single-crack mode, the experimental results demonstrate that maximal values of displacements in x- and y- directions are 0.1 and 0.08, respectively. They occur around both ends of the line and sides directly next to the line where pressure takes impact. Moreover, the pressure of injected fluid almost gained its initial value, i.e. 3,000 inside and close to the notch. Further, the results for non-central single-crack mode and bifurcated crack mode are depicted. In central single-crack mode and square computational area with a uniform mesh, computational times corresponding to the numerical schemes based on the high order finite element method for spatial discretization and Crank-Nicolson as well as semi-implicit techniques for temporal discretizations are 207.19s and 97.47s, respectively, with 2,048 elements, final time T = 0.2 and time step size τ = 0.01. Also, the simulations effectively illustrate a further decrease in computational time when the method is equipped with an adaptive mesh refinement strategy. The computational cost is reduced to 4.23s when the governed model is solved with the numerical scheme based on the adaptive high order finite element method and semi-implicit technique for spatial and temporal discretizations, respectively. Similarly, in other samples, the reduction of computational cost has been shown.

Originality/value

This is the first time that the high-order finite element method is employed to solve the model investigated in the current paper.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 25 July 2024

Reza Masoumzadeh, Mostafa Abbaszadeh and Mehdi Dehghan

The purpose of this study is to develop a new numerical algorithm to simulate the phase-field model.

Abstract

Purpose

The purpose of this study is to develop a new numerical algorithm to simulate the phase-field model.

Design/methodology/approach

First, the derivative of the temporal direction is discretized by a second-order linearized finite difference scheme where it conserves the energy stability of the mathematical model. Then, the isogeometric collocation (IGC) method is used to approximate the derivative of spacial direction. The IGC procedure can be applied on irregular physical domains. The IGC method is constructed based upon the nonuniform rational B-splines (NURBS). Each curve and surface can be approximated by the NURBS. Also, a map will be defined to project the physical domain to a simple computational domain. In this procedure, the partial derivatives will be transformed to the new domain by the Jacobian and Hessian matrices. According to the mentioned procedure, the first- and second-order differential matrices are built. Furthermore, the pseudo-spectral algorithm is used to derive the first- and second-order nodal differential matrices. In the end, the Greville Abscissae points are used to the collocation method.

Findings

In the numerical experiments, the efficiency and accuracy of the proposed method are assessed through two examples, demonstrating its performance on both rectangular and nonrectangular domains.

Originality/value

This research work introduces the IGC method as a simulation technique for the phase-field crystal model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 September 2024

GuoLong Zhang

This study investigates the coupling effects between temperature, permeability and stress fields during the development of geothermal reservoirs, comparing the impacts of…

Abstract

Purpose

This study investigates the coupling effects between temperature, permeability and stress fields during the development of geothermal reservoirs, comparing the impacts of inter-well pressure differentials, reservoir temperature and heat extraction fluid on geothermal extraction.

Design/methodology/approach

This study employs theoretical analysis and numerical simulation to explore the coupling mechanisms of temperature, permeability and stress fields in a geothermal reservoir using a thermal-hydrological-mechanical (THM) three-field coupling model.

Findings

The results reveal that the pressure differential between wells significantly impacts geothermal extraction capacity, with SC-CO2 achieving 1.83 times the capacity of water. Increasing the aperture of hydraulic and natural fractures effectively enhances geothermal production, with a notable enhancement for natural fractures.

Originality/value

The research provides a critical theoretical foundation for understanding THM coupling mechanisms in geothermal extraction, supporting the optimization of geothermal resource development and utilization.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 July 2024

Xuan Hoang Khoa Le, Hakan F. Öztop and Mikhail A. Sheremet

The performance of solid fins inside a differentially heated cubical cavity is numerically studied in this paper. The main purpose of the study is to make an optimization to reach…

Abstract

Purpose

The performance of solid fins inside a differentially heated cubical cavity is numerically studied in this paper. The main purpose of the study is to make an optimization to reach the maximum heat transfer in the enclosure having the solid fins with studied parameters.

Design/methodology/approach

The considered domain of interest is a differentially heated cube having heat-conducting solid fins placed on the heated wall while an opposite wall is a cooled one. Other walls are adiabatic. Governing equations describing natural convection in the fluid filled cube and heat conduction in solid fins have been written using non-dimensional variables such velocity and vorticity taking into account the Boussinesq approximation for the buoyancy force and ideal solid/fluid interfaces between solid fins and fluid. The formulated equations with appropriate initial and boundary conditions have been solved by the finite difference method of the second of accuracy. The developed in-house computational code has been validated using the mesh sensitivity analysis and numerical data of other authors. Analysis has been performed in a wide range of key parameters such as Rayleigh number (Ra = 104–106), non-dimensional fins length (l = 0.2–0.8), non-dimensional location of fins (d = 0.2–0.6) and number of fins (n = 1–3).

Findings

From numerical methods point of view the used non-primitive variables allows to perform numerical simulation of convective heat transfer in three-dimensional (3D) regions with two advantages, namely, excluding difficulties that can be found using vector potential functions and reducing the computational time compared to primitive variables and SIMPLE-like algorithms. From a physical point of view, it has been shown that using solid fins can intensify the heat transfer performance compared to cavities without any fins. Fins located close to the bottom wall of the cavity have a better heat transfer rate than those placed close to the upper cavity surface. At high Rayleigh numbers, increasing the fins length beyond 0.6 leads to a reduction of the average Nusselt number, and one solid fin can be used to intensify the heat transfer.

Originality/value

The present numerical study is based on hybrid approach for numerical analysis of convective heat transfer using velocity and vorticity that has some mentioned advantages. Obtained results allow intensifying the heat transfer using solid fins in 3D chambers with appropriate location and length.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 4 of 4