Search results

1 – 3 of 3
Article
Publication date: 16 January 2017

Peng Wu, Shaorong Xie, Hengli Liu, Ming Li, Hengyu Li, Yan Peng, Xiaomao Li and Jun Luo

Autonomous obstacle avoidance is important in unmanned surface vehicle (USV) navigation. Although the result of obstacle detection is often inaccurate because of the inherent…

1153

Abstract

Purpose

Autonomous obstacle avoidance is important in unmanned surface vehicle (USV) navigation. Although the result of obstacle detection is often inaccurate because of the inherent errors of LIDAR, conventional methods typically emphasize on a single obstacle-avoidance algorithm and neglect the limitation of sensors and safety in a local region. Conventional methods also fail in seamlessly integrating local and global obstacle avoidance algorithms. This paper aims to present a cooperative manoeuvring approach including both local and global obstacle avoidance.

Design/methodology/approach

The global algorithm used in our USV is the Artificial Potential Field-Ant Colony Optimization (APF-ACO) obstacle-avoidance algorithm, which plans a relative optimal path on the specified electronic map before the cruise of USV. The local algorithm is a multi-layer obstacle-avoidance framework based on a single LIDAR to present an efficient solution to USV path planning in the case of sensor errors and collision risks. When obstacles are within a layer, the USV uses a corresponding obstacle-avoidance algorithm. Then the USV moves towards the global direction according to fuzzy rules in the fuzzy layer.

Findings

The presented method offers a solution for obstacle avoidance in a complex environment. The USV follows the global trajectory planed by the APF-ACO algorithm. While, the USV can bypass current obstacle in the local region based on the multi-layer method effectively. This fact was validated by simulations and field trials.

Originality/value

The method presented in this paper takes advantage of algorithm integration that remedies errors of obstacle detection. Simulation and experiments were also conducted for performance evaluation.

Details

Industrial Robot: An International Journal, vol. 44 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 June 2023

Somia Boubedra, Cherif Tolba, Pietro Manzoni, Djamila Beddiar and Youcef Zennir

With the demographic increase, especially in big cities, heavy traffic, traffic congestion, road accidents and augmented pollution levels hamper transportation networks. Finding…

Abstract

Purpose

With the demographic increase, especially in big cities, heavy traffic, traffic congestion, road accidents and augmented pollution levels hamper transportation networks. Finding the optimal routes in urban scenarios is very challenging since it should consider reducing traffic jams, optimizing travel time, decreasing fuel consumption and reducing pollution levels accordingly. In this regard, the authors propose an enhanced approach based on the Ant Colony algorithm that allows vehicle drivers to search for optimal routes in urban areas from different perspectives, such as shortness and rapidness.

Design/methodology/approach

An improved ant colony algorithm (ACO) is used to calculate the optimal routes in an urban road network by adopting an elitism strategy, a random search approach and a flexible pheromone deposit-evaporate mechanism. In addition, the authors make a trade-off between route length, travel time and congestion level.

Findings

Experimental tests show that the routes found using the proposed algorithm improved the quality of the results by 30% in comparison with the ACO algorithm. In addition, the authors maintain a level of accuracy between 0.9 and 0.95. Therefore, the overall cost of the found solutions decreased from 67 to 40. In addition, the experimental results demonstrate that the authors’ improved algorithm outperforms not only the original ACO algorithm but also popular meta-heuristic algorithms such as the genetic algorithm (GA) and particle swarm optimization (PSO) in terms of reducing travel costs and improving overall fitness value.

Originality/value

The proposed improvements to the ACO to search for optimal paths for urban roads include incorporating multiple factors, such as travel length, time and congestion level, into the route selection process. Furthermore, random search, elitism strategy and flexible pheromone updating rules are proposed to consider the dynamic changes in road network conditions and make the proposed approach more relevant and effective. These enhancements contribute to the originality of the authors’ work, and they have the potential to advance the field of traffic routing.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 16 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 2 September 2019

Rupeng Yuan, Fuhai Zhang, Jiadi Qu, Guozhi Li and Yili Fu

This paper aims to provide a novel obstacle avoidance method based on multi-information inflation map.

Abstract

Purpose

This paper aims to provide a novel obstacle avoidance method based on multi-information inflation map.

Design/methodology/approach

In this paper, the multi-information inflation map is introduced, which considers different information, including a two-dimensional grid map and a variety of sensor information. The static layer of the map is pre-processed at first. Then sensor inputs are added in different semantic layers. The processed information in semantic layers is used to update the static layer. The obstacle avoidance algorithm based on the multi-information inflation map is able to generate different avoidance paths for different kinds of obstacles, and the motion planning based on multi-information inflation map can track the global path and drive the robot.

Findings

The proposed method was implemented on a self-made mobile robot. Four experiments are conducted to verify the advantages of the proposed method. The first experiment is to demonstrate the advantages of the multi-information inflation map over the layered cost map. The second and third experiments verify the effectiveness of the obstacle avoidance path generation and motion planning. The fourth experiment comprehensively verifies that the obstacle avoidance algorithm is able to deal with different kinds of obstacles.

Originality/value

The multi-information inflation map proposed in this paper has better performance than the layered cost maps. As the static layer is pre-processed, the computational efficiency is higher. Sensor information is added in semantic layers with different cost attenuation coefficients. All layers are reset before next update. Therefore, the previous state will not affect the current situation. The obstacle avoidance and motion planning algorithm based on the multi-information inflation map can generate different paths for different obstacles and drive a robot safely and control the velocity according to different conditions.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Access

Year

All dates (3)

Content type

1 – 3 of 3