Search results

1 – 1 of 1
Article
Publication date: 15 June 2021

Annapoorani Subramanian and Jayaparvathy R.

The solar photovoltaic (PV) system is one of the outstanding, clean and green energy options available for electrical power generation. The varying meteorological operating…

Abstract

Purpose

The solar photovoltaic (PV) system is one of the outstanding, clean and green energy options available for electrical power generation. The varying meteorological operating conditions impose various challenges in extracting maximum available power from the solar PV system. The drawbacks of conventional and evolutionary algorithms-based maximum power point tracking (MPPT) approaches are its inability to extract maximum power during partial shading conditions and quickly changing irradiations. Hence, the purpose of this paper is to propose a modified elephant herding optimization (MEHO) based MPPT approach to track global maximum power point (GMPP) proficiently during dynamic and steady state operations within less time.

Design/methodology/approach

A MEHO-based MPPT approach is proposed in this paper by incorporating Gaussian mutation (GM) in the original elephant herding optimization (EHO) to enhance the optimizing capability of determining the optimal value of DC–DC converter’s duty cycle (D) to operate at GMPP.

Findings

The effectiveness of the proposed system is compared with EHO based MPPT, Firefly Algorithm (FA) MPPT and particle swarm optimization (PSO) MPPT during uniform irradiation condition (UIC) and partial shading situation (PSS) using simulation results. An experimental setup has been designed and implemented. Simulation results obtained are validated through experimental results which prove the viability of the proposed technique for an efficient green energy solution.

Originality/value

With the proposed MEHO MPPT, it has been noted that the settling period is lowered by 3.1 times in comparison of FA MPPT, 1.86 times when compared to PSO based MPPT and 1.29 times when compared to EHO based MPPT with augmented efficiency of 99.27%.

1 – 1 of 1