Search results

1 – 1 of 1
Article
Publication date: 29 November 2018

Dilip Sembakutti, Aldin Ardian, Mustafa Kumral and Agus Pulung Sasmito

The purpose of this paper is twofold: an approach is proposed to determine the optimum replacement time for shovel teeth; and a risk-quantification approached is developed to…

Abstract

Purpose

The purpose of this paper is twofold: an approach is proposed to determine the optimum replacement time for shovel teeth; and a risk-quantification approached is developed to derive a confidence interval for replacement time.

Design/methodology/approach

The risk-quantification approach is based on a combination of Monte Carlo simulation and Markov chain. Monte Carlo simulation whereby the wear of shovel teeth is probabilistically monitored over time is used.

Findings

Results show that a proper replacement strategy has potential to increase operation efficiency and the uncertainties associated with this strategy can be managed.

Research limitations/implications

The failure time distribution of a tooth is assumed to remain “identically distributed and independent.” Planned tooth replacements are always done when the shovel is not in operation (e.g. between a shift change).

Practical implications

The proposed approach can be effectively used to determine a replacement strategy, along with the level of confidence level, for preventive maintenance planning.

Originality/value

The originality of the paper rests on developing a novel approach to monitor wear on mining shovels probabilistically. Uncertainty associated with production targets is quantified.

Details

International Journal of Quality & Reliability Management, vol. 35 no. 10
Type: Research Article
ISSN: 0265-671X

Keywords

1 – 1 of 1