Search results

1 – 10 of over 1000
Article
Publication date: 9 February 2024

Ravinder Singh

This paper aims to focus on solving the path optimization problem by modifying the probabilistic roadmap (PRM) technique as it suffers from the selection of the optimal number of…

Abstract

Purpose

This paper aims to focus on solving the path optimization problem by modifying the probabilistic roadmap (PRM) technique as it suffers from the selection of the optimal number of nodes and deploy in free space for reliable trajectory planning.

Design/methodology/approach

Traditional PRM is modified by developing a decision-making strategy for the selection of optimal nodes w.r.t. the complexity of the environment and deploying the optimal number of nodes outside the closed segment. Subsequently, the generated trajectory is made smoother by implementing the modified Bezier curve technique, which selects an optimal number of control points near the sharp turns for the reliable convergence of the trajectory that reduces the sum of the robot’s turning angles.

Findings

The proposed technique is compared with state-of-the-art techniques that show the reduction of computational load by 12.46%, the number of sharp turns by 100%, the number of collisions by 100% and increase the velocity parameter by 19.91%.

Originality/value

The proposed adaptive technique provides a better solution for autonomous navigation of unmanned ground vehicles, transportation, warehouse applications, etc.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 28 November 2023

Shiqin Zeng, Frederick Chung and Baabak Ashuri

Completing Right-of-Way (ROW) acquisition process on schedule is critical to avoid delays and cost overruns on transportation projects. However, transportation agencies face…

Abstract

Purpose

Completing Right-of-Way (ROW) acquisition process on schedule is critical to avoid delays and cost overruns on transportation projects. However, transportation agencies face challenges in accurately forecasting ROW acquisition timelines in the early stage of projects due to complex nature of acquisition process and limited design information. There is a need of improving accuracy of estimating ROW acquisition duration during the early phase of project development and quantitatively identifying risk factors affecting the duration.

Design/methodology/approach

The quantitative research methodology used to develop the forecasting model includes an ensemble algorithm based on decision tree and adaptive boosting techniques. A dataset of Georgia Department of Transportation projects held from 2010 to 2019 is utilized to demonstrate building the forecasting model. Furthermore, sensitivity analysis is performed to identify critical drivers of ROW acquisition durations.

Findings

The forecasting model developed in this research achieves a high accuracy to predict ROW durations by explaining 74% of the variance in ROW acquisition durations using project features, which is outperforming single regression tree, multiple linear regression and support vector machine. Moreover, number of parcels, average cost estimation per parcel, length of projects, number of condemnations, number of relocations and type of work are found to be influential factors as drivers of ROW acquisition duration.

Originality/value

This research contributes to the state of knowledge in estimating ROW acquisition timeline through (1) developing a novel machine learning model to accurately estimate ROW acquisition timelines, and (2) identifying drivers (i.e. risk factors) of ROW acquisition durations. The findings of this research will provide transportation agencies with insights on how to improve practices in scheduling ROW acquisition process.

Details

Built Environment Project and Asset Management, vol. 14 no. 2
Type: Research Article
ISSN: 2044-124X

Keywords

Article
Publication date: 22 May 2023

Hanuman Reddy N., Amit Lathigara, Rajanikanth Aluvalu and Uma Maheswari V.

Cloud computing (CC) refers to the usage of virtualization technology to share computing resources through the internet. Task scheduling (TS) is used to assign computational…

Abstract

Purpose

Cloud computing (CC) refers to the usage of virtualization technology to share computing resources through the internet. Task scheduling (TS) is used to assign computational resources to requests that have a high volume of pending processing. CC relies on load balancing to ensure that resources like servers and virtual machines (VMs) running on real servers share the same amount of load. VMs are an important part of virtualization, where physical servers are transformed into VM and act as physical servers during the process. It is possible that a user’s request or data transmission in a cloud data centre may be the reason for the VM to be under or overloaded with data.

Design/methodology/approach

VMs are an important part of virtualization, where physical servers are transformed into VM and act as physical servers during the process. It is possible that a user’s request or data transmission in a cloud data centre may be the reason for the VM to be under or overloaded with data. With a large number of VM or jobs, this method has a long makespan and is very difficult. A new idea to cloud loads without decreasing implementation time or resource consumption is therefore encouraged. Equilibrium optimization is used to cluster the VM into underloaded and overloaded VMs initially in this research. Underloading VMs is used to improve load balance and resource utilization in the second stage. The hybrid algorithm of BAT and the artificial bee colony (ABC) helps with TS using a multi-objective-based system. The VM manager performs VM migration decisions to provide load balance among physical machines (PMs). When a PM is overburdened and another PM is underburdened, the decision to migrate VMs is made based on the appropriate conditions. Balanced load and reduced energy usage in PMs are achieved in the former case. Manta ray foraging (MRF) is used to migrate VMs, and its decisions are based on a variety of factors.

Findings

The proposed approach provides the best possible scheduling for both VMs and PMs. To complete the task, improved whale optimization algorithm for Cloud TS has 42 s of completion time, enhanced multi-verse optimizer has 48 s, hybrid electro search with a genetic algorithm has 50 s, adaptive benefit factor-based symbiotic organisms search has 38 s and, finally, the proposed model has 30 s, which shows better performance of the proposed model.

Originality/value

User’s request or data transmission in a cloud data centre may cause the VMs to be under or overloaded with data. To identify the load on VM, initially EQ algorithm is used for clustering process. To figure out how well the proposed method works when the system is very busy by implementing hybrid algorithm called BAT–ABC. After the TS process, VM migration is occurred at the final stage, where optimal VM is identified by using MRF algorithm. The experimental analysis is carried out by using various metrics such as execution time, transmission time, makespan for various iterations, resource utilization and load fairness. With its system load, the metric gives load fairness. How load fairness is worked out depends on how long each task takes to do. It has been added that a cloud system may be able to achieve more load fairness if tasks take less time to finish.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 24 March 2022

Elavaar Kuzhali S. and Pushpa M.K.

COVID-19 has occurred in more than 150 countries and causes a huge impact on the health of many people. The main purpose of this work is, COVID-19 has occurred in more than 150…

Abstract

Purpose

COVID-19 has occurred in more than 150 countries and causes a huge impact on the health of many people. The main purpose of this work is, COVID-19 has occurred in more than 150 countries and causes a huge impact on the health of many people. The COVID-19 diagnosis is required to detect at the beginning stage and special attention should be given to them. The fastest way to detect the COVID-19 infected patients is detecting through radiology and radiography images. The few early studies describe the particular abnormalities of the infected patients in the chest radiograms. Even though some of the challenges occur in concluding the viral infection traces in X-ray images, the convolutional neural network (CNN) can determine the patterns of data between the normal and infected X-rays that increase the detection rate. Therefore, the researchers are focusing on developing a deep learning-based detection model.

Design/methodology/approach

The main intention of this proposal is to develop the enhanced lung segmentation and classification of diagnosing the COVID-19. The main processes of the proposed model are image pre-processing, lung segmentation and deep classification. Initially, the image enhancement is performed by contrast enhancement and filtering approaches. Once the image is pre-processed, the optimal lung segmentation is done by the adaptive fuzzy-based region growing (AFRG) technique, in which the constant function for fusion is optimized by the modified deer hunting optimization algorithm (M-DHOA). Further, a well-performing deep learning algorithm termed adaptive CNN (A-CNN) is adopted for performing the classification, in which the hidden neurons are tuned by the proposed DHOA to enhance the detection accuracy. The simulation results illustrate that the proposed model has more possibilities to increase the COVID-19 testing methods on the publicly available data sets.

Findings

From the experimental analysis, the accuracy of the proposed M-DHOA–CNN was 5.84%, 5.23%, 6.25% and 8.33% superior to recurrent neural network, neural networks, support vector machine and K-nearest neighbor, respectively. Thus, the segmentation and classification performance of the developed COVID-19 diagnosis by AFRG and A-CNN has outperformed the existing techniques.

Originality/value

This paper adopts the latest optimization algorithm called M-DHOA to improve the performance of lung segmentation and classification in COVID-19 diagnosis using adaptive K-means with region growing fusion and A-CNN. To the best of the authors’ knowledge, this is the first work that uses M-DHOA for improved segmentation and classification steps for increasing the convergence rate of diagnosis.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 29 October 2021

Sai Bharadwaj B. and Sumanth Kumar Chennupati

The purpose of this manuscript is to detect heart fault using Electrocardiogram. Mutually low and high frequency noises such as electromyography (EMG) and power line interference…

Abstract

Purpose

The purpose of this manuscript is to detect heart fault using Electrocardiogram. Mutually low and high frequency noises such as electromyography (EMG) and power line interference (PLI) degrades the performance of ECG signals.

Design/methodology/approach

The ECG record depicts the procedural electrical movement of the heart, which is non-invasive foot age obtained by placing surface electrodes on designated locations of the patient’s skin. The main concept of this manuscript is to present a novel filtering method to cancel the unwanted noises in ECG signal. Here, intrinsic time scale decomposition (ITD) is introduced to suppress the effect of PLI from ECG signals.

Findings

In the existing ITD, the gain control parameter is a constant value; however, in this paper it is an adaptive feature that varies according to certain constraints. Simulation outcomes show that the proposed method effectively reduces the effect of PLI and quantitatively express the effectiveness with different evaluation metrics.

Originality/value

The results found by the proposed method are compared with Fourier decomposition technique and eigen value decomposition methods (EDM) to validate the effectiveness of the proposed method.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 7 May 2024

Atef Gharbi

The present paper aims to address challenges associated with path planning and obstacle avoidance in mobile robotics. It introduces a pioneering solution called the Bi-directional…

Abstract

Purpose

The present paper aims to address challenges associated with path planning and obstacle avoidance in mobile robotics. It introduces a pioneering solution called the Bi-directional Adaptive Enhanced A* (BAEA*) algorithm, which uses a new bidirectional search strategy. This approach facilitates simultaneous exploration from both the starting and target nodes and improves the efficiency and effectiveness of the algorithm in navigation environments. By using the heuristic knowledge A*, the algorithm avoids unproductive blind exploration, helps to obtain more efficient data for identifying optimal solutions. The simulation results demonstrate the superior performance of the BAEA* algorithm in achieving rapid convergence towards an optimal action strategy compared to existing methods.

Design/methodology/approach

The paper adopts a careful design focusing on the development and evaluation of the BAEA* for mobile robot path planning, based on the reference [18]. The algorithm has remarkable adaptability to dynamically changing environments and ensures robust navigation in the context of environmental changes. Its scale further enhances its applicability in large and complex environments, which means it has flexibility for various practical applications. The rigorous evaluation of our proposed BAEA* algorithm with the Bidirectional adaptive A* (BAA*) algorithm [18] in five different environments demonstrates the superiority of the BAEA* algorithm. The BAEA* algorithm consistently outperforms BAA*, demonstrating its ability to plan shorter and more stable paths and achieve higher success rates in all environments.

Findings

The paper adopts a careful design focusing on the development and evaluation of the BAEA* for mobile robot path planning, based on the reference [18]. The algorithm has remarkable adaptability to dynamically changing environments and ensures robust navigation in the context of environmental changes. Its scale further enhances its applicability in large and complex environments, which means it has flexibility for various practical applications. The rigorous evaluation of our proposed BAEA* algorithm with the Bi-directional adaptive A* (BAA*) algorithm [18] in five different environments demonstrates the superiority of the BAEA* algorithm.

Research limitations/implications

The rigorous evaluation of our proposed BAEA* algorithm with the BAA* algorithm [18] in five different environments demonstrates the superiority of the BAEA* algorithm. The BAEA* algorithm consistently outperforms BAA*, demonstrating its ability to plan shorter and more stable paths and achieve higher success rates in all environments.

Originality/value

The originality of this paper lies in the introduction of the bidirectional adaptive enhancing A* algorithm (BAEA*) as a novel solution for path planning for mobile robots. This algorithm is characterized by its unique characteristics that distinguish it from others in this field. First, BAEA* uses a unique bidirectional search strategy, allowing to explore the same path from both the initial node and the target node. This approach significantly improves efficiency by quickly converging to the best paths and using A* heuristic knowledge. In particular, the algorithm shows remarkable capabilities to quickly recognize shorter and more stable paths while ensuring higher success rates, which is an important feature for time-sensitive applications. In addition, BAEA* shows adaptability and robustness in dynamically changing environments, not only avoiding obstacles but also respecting various constraints, ensuring safe path selection. Its scale further increases its versatility by seamlessly applying it to extensive and complex environments, making it a versatile solution for a wide range of practical applications. The rigorous assessment against established algorithms such as BAA* consistently shows the superior performance of BAEA* in planning shorter paths, achieving higher success rates in different environments and cementing its importance in complex and challenging environments. This originality marks BAEA* as a pioneering contribution, increasing the efficiency, adaptability and applicability of mobile robot path planning methods.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 10 November 2023

Zhongkai Shen, Shaojun Li, Zhenpeng Wu, Bowen Dong, Wenyan Luo and Liangcai Zeng

This study aims to investigate the effects of irregular groove textures on the friction and wear performance of sliding contact surfaces. These textures possess multiple depths…

Abstract

Purpose

This study aims to investigate the effects of irregular groove textures on the friction and wear performance of sliding contact surfaces. These textures possess multiple depths and asymmetrical features. To optimize the irregular groove texture structure of the sliding contact surface, an adaptive genetic algorithm was used for research and optimization purposes.

Design/methodology/approach

Using adaptive genetic algorithm as an optimization tool, numerical simulations were conducted on surface textures by establishing a dimensionless form of the Reynolds equation and setting appropriate boundary conditions. An adaptive genetic algorithm program in MATLAB was established. Genetic iterative methods were used to calculate the optimal texture structure. Genetic individuals were selected through fitness comparison. The depth of the groove texture is gradually adjusted through genetic crossover, mutation, and mutation operations. The optimal groove structure was ultimately obtained by comparing the bearing capacity and pressure of different generations of micro-convex bodies.

Findings

After about 100 generations of iteration, the distribution of grooved textures became relatively stable, and after about 320 generations, the depth and distribution of groove textures reached their optimal structure. At this stage, irregular texture structures can support more loads by forming oil films. Compared with regular textures, the friction coefficient of irregular textures decreased by nearly 47.01%, while the carrying capacity of lubricating oil films increased by 54.57%. The research results show that irregular texture structures have better lubrication characteristics and can effectively improve the friction performance of component surfaces.

Originality/value

Surface textures can enhance the friction and lubrication performance of metal surfaces, improving the mechanical performance and lifespan of components. However, surface texture processing is challenging, as it often requires multiple experimental comparisons to determine the optimal texture structure, resulting in high trial-and-error costs. By using an adaptive genetic algorithm as an optimization tool, the optimal surface groove structure can be obtained through simulation and modeling, effectively saving costs in the process.

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 February 2024

Atefeh Hemmati, Mani Zarei and Amir Masoud Rahmani

Big data challenges and opportunities on the Internet of Vehicles (IoV) have emerged as a transformative paradigm to change intelligent transportation systems. With the growth of…

Abstract

Purpose

Big data challenges and opportunities on the Internet of Vehicles (IoV) have emerged as a transformative paradigm to change intelligent transportation systems. With the growth of data-driven applications and the advances in data analysis techniques, the potential for data-adaptive innovation in IoV applications becomes an outstanding development in future IoV. Therefore, this paper aims to focus on big data in IoV and to provide an analysis of the current state of research.

Design/methodology/approach

This review paper uses a systematic literature review methodology. It conducts a thorough search of academic databases to identify relevant scientific articles. By reviewing and analyzing the primary articles found in the big data in the IoV domain, 45 research articles from 2019 to 2023 were selected for detailed analysis.

Findings

This paper discovers the main applications, use cases and primary contexts considered for big data in IoV. Next, it documents challenges, opportunities, future research directions and open issues.

Research limitations/implications

This paper is based on academic articles published from 2019 to 2023. Therefore, scientific outputs published before 2019 are omitted.

Originality/value

This paper provides a thorough analysis of big data in IoV and considers distinct research questions corresponding to big data challenges and opportunities in IoV. It also provides valuable insights for researchers and practitioners in evolving this field by examining the existing fields and future directions for big data in the IoV ecosystem.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 13 March 2024

Ziyuan Ma, Huajun Gong and Xinhua Wang

The purpose of this paper is to construct an event-triggered finite-time fault-tolerant formation tracking controller, which can achieve a time-varying formation control for…

Abstract

Purpose

The purpose of this paper is to construct an event-triggered finite-time fault-tolerant formation tracking controller, which can achieve a time-varying formation control for multiple unmanned aerial vehicles (UAVs) during actuator failures and external perturbations.

Design/methodology/approach

First, this study developed the formation tracking protocol for each follower using UAV formation members, defining the tracking inaccuracy of the UAV followers’ location. Subsequently, this study designed the multilayer event-triggered controller based on the backstepping method framework within finite time. Then, considering the actuator failures, and added self-adaptive thought for fault-tolerant control within finite time, the event-triggered closed-loop system is subsequently shown to be a finite-time stable system. Furthermore, the Zeno behavior is analyzed to prevent infinite triggering instances within a finite time. Finally, simulations are conducted with external disturbances and actuator failure conditions to demonstrate formation tracking controller performance.

Findings

It achieves improved performance in the presence of external disturbances and system failures. Combining limited-time adaptive control and event triggering improves system stability, increase robustness to disturbances and calculation efficiency. In addition, the designed formation tracking controller can effectively control the time-varying formation of the leader and followers to complete the task, and by adding a fixed-time observer, it can effectively compensate for external disturbances and improve formation control accuracy.

Originality/value

A formation-following controller is designed, which can handle both external disturbances and internal actuator failures during formation flight, and the proposed method can be applied to a variety of formation control scenarios and does not rely on a specific type of UAV or communication network.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 April 2024

Dina Ezz Eldin and Heba Magdy

Heritage buildings are a witness to previous civilizations and constitute important elements in transmitting cultural identity through generations. In 1938, Alexandria University…

Abstract

Purpose

Heritage buildings are a witness to previous civilizations and constitute important elements in transmitting cultural identity through generations. In 1938, Alexandria University was established; it was called the University of Farouk at the time. In 1952, the university was named “Alexandria University,” and since then, it has witnessed growth and expansion in several fields. The research aims to preserve the heritage of this academic institution. It seeks to document this wealth of buildings that tell the story of the second-earliest university in Egypt.

Design/methodology/approach

A mixed-method approach was employed. A descriptive method was used to narrate the history of the university and the importance of its buildings. Within the quantitative approach, a questionnaire was chosen as the survey instrument for collecting the data within the research case study. The aim was to determine the awareness of students, staff and employees of the heritage importance of their faculty. Within the qualitative approach, several interviews were conducted with employees in the engineering departments of the university administrative building at Chatby and some of the selected faculties. The aim was to determine the methods used for the conservation of these buildings.

Findings

Alexandria University has a heritage value not only in its great history but also through its heritage buildings. Raising the awarness of the university's affiliates of this heritage will lead to enhance the feelings of loyalty and belongings to the university. Therefore, preserving this heritage and properly managing it is crucial.

Originality/value

Universities have to recognize that their built heritage constitutes a unique expression that can create a distinctive sense of place. University heritage is crucial in defining and interpreting the university cultural identity. The institution must identify resources that will help build a new public image and contribute to develop a successful brand. Campus appearance is an important factor that has a significant impact on student feelings of loyalty and belonging.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1266

Keywords

1 – 10 of over 1000