Search results

1 – 2 of 2
Open Access
Article
Publication date: 17 May 2024

Tianyi Zhang, Haowu Luo, Ning Liu, Feiyan Min, Zhixin Liang and Gao Wang

As the demand for human–robot collaboration in manufacturing applications grows, the necessity for collision detection functions in robots becomes increasingly paramount for…

Abstract

Purpose

As the demand for human–robot collaboration in manufacturing applications grows, the necessity for collision detection functions in robots becomes increasingly paramount for safety. Hence, this paper aims to improve the existing method to achieve efficient, accurate and sensitive robot collision detection.

Design/methodology/approach

The external torque is estimated by momentum observers based on the robot dynamics model. Because the state of the joints is more accessible to distinguish under the action of the suppression operator proposed in this paper, the mutated external torque caused by joint reversal can be accurately attenuated. Finally, time series analysis (TSA) methods can continuously generate dynamic thresholds based on external torques.

Findings

Compared with the collision detection method based only on TSA, the invalid time of the proposed method is less during joint reversal. Although the soft-collision detection accuracy of this method is lower than that of the symmetric threshold method, it is superior in terms of detection delay and has a higher hard-collision detection accuracy.

Originality/value

Owing to the mutated external torque caused by joint reversal, which seriously affects the stability of time series models, the collision detection method based only on TSA cannot detect continuously. The consequences are disastrous if the robot collides with people or the environment during joint reversal. After multiple experimental verifications, the proposed method still exhibits detection capabilities during joint reversal and can implement real-time collision detection. Therefore, it is suitable for various engineering applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 January 2024

Wei Xiao, Zhongtao Fu, Shixian Wang and Xubing Chen

Because of the key role of joint torque in industrial robots (IRs) motion performance control and energy consumption calculation and efficiency optimization, the purpose of this…

Abstract

Purpose

Because of the key role of joint torque in industrial robots (IRs) motion performance control and energy consumption calculation and efficiency optimization, the purpose of this paper is to propose a deep learning torque prediction method based on long short-term memory (LSTM) recurrent neural networks optimized by particle swarm optimization (PSO), which can accurately predict the the joint torque.

Design/methodology/approach

The proposed model optimized the LSTM with PSO algorithm to accurately predict the IRs joint torque. The authors design an excitation trajectory for ABB 1600–10/145 experimental robot and collect its relative dynamic data. The LSTM model was trained with the experimental data, and PSO was used to find optimal number of LSTM nodes and learning rate, then a torque prediction model is established based on PSO-LSTM deep learning method. The novel model is used to predict the robot’s six joint torque and the root mean error squares of the predicted data together with least squares (LS) method were comparably studied.

Findings

The predicted joint torque value by PSO-LSTM deep learning approach is highly overlapped with those from real experiment robot, and the error is quite small. The average square error between the predicted joint torque data and experiment data is 2.31 N.m smaller than that with the LS method. The accuracy of the novel PSO-LSTM learning method for joint torque prediction of IR is proved.

Originality/value

PSO and LSTM model are deeply integrated for the first time to predict the joint torque of IR and the prediction accuracy is verified.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 2 of 2