Search results

1 – 2 of 2
Article
Publication date: 16 February 2024

Qing Wang, Xiaoli Zhang, Jiafu Su and Na Zhang

Platform-based enterprises, as micro-entities in the platform economy, have the potential to effectively promote the low-carbon development of both supply and demand sides in the…

Abstract

Purpose

Platform-based enterprises, as micro-entities in the platform economy, have the potential to effectively promote the low-carbon development of both supply and demand sides in the supply chain. Therefore, this paper aims to provide a multi-criteria decision-making method in a probabilistic hesitant fuzzy environment to assist platform-type companies in selecting cooperative suppliers for carbon reduction in green supply chains.

Design/methodology/approach

This paper combines the advantages of probabilistic hesitant fuzzy sets (PHFS) to address uncertainty issues and proposes an improved multi-criteria decision-making method called PHFS-DNMEREC-MABAC for aiding platform-based enterprises in selecting carbon emission reduction collaboration suppliers in green supply chains. Within this decision-making method, we enhance the standardization process of both the DNMEREC and MABAC methods by directly standardizing probabilistic hesitant fuzzy elements. Additionally, a probability splitting algorithm is introduced to handle probabilistic hesitant fuzzy elements of varying lengths, mitigating information bias that traditional approaches tend to introduce when adding values based on risk preferences.

Findings

In this paper, we apply the proposed method to a case study involving the selection of carbon emission reduction collaboration suppliers for Tmall Mart and compare it with the latest existing decision-making methods. The results demonstrate the applicability of the proposed method and the effectiveness of the introduced probability splitting algorithm in avoiding information bias.

Originality/value

Firstly, this paper proposes a new multi-criteria decision making method for aiding platform-based enterprises in selecting carbon emission reduction collaboration suppliers in green supply chains. Secondly, in this method, we provided a new standard method to process probability hesitant fuzzy decision making information. Finally, the probability splitting algorithm was introduced to avoid information bias in the process of dealing with inconsistent lengths of probabilistic hesitant fuzzy elements.

Details

Asia Pacific Journal of Marketing and Logistics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-5855

Keywords

Article
Publication date: 27 December 2022

Bright Awuku, Eric Asa, Edmund Baffoe-Twum and Adikie Essegbey

Challenges associated with ensuring the accuracy and reliability of cost estimation of highway construction bid items are of significant interest to state highway transportation…

Abstract

Purpose

Challenges associated with ensuring the accuracy and reliability of cost estimation of highway construction bid items are of significant interest to state highway transportation agencies. Even with the existing research undertaken on the subject, the problem of inaccurate estimation of highway bid items still exists. This paper aims to assess the accuracy of the cost estimation methods employed in the selected studies to provide insights into how well they perform empirically. Additionally, this research seeks to identify, synthesize and assess the impact of the factors affecting highway unit prices because they affect the total cost of highway construction costs.

Design/methodology/approach

This paper systematically searched, selected and reviewed 105 papers from Scopus, Google Scholar, American Society of Civil Engineers (ASCE), Transportation Research Board (TRB) and Science Direct (SD) on conceptual cost estimation of highway bid items. This study used content and nonparametric statistical analyses to determine research trends, identify, categorize the factors influencing highway unit prices and assess the combined performance of conceptual cost prediction models.

Findings

Findings from the trend analysis showed that between 1983 and 2019 North America, Asia, Europe and the Middle East contributed the most to improving highway cost estimation research. Aggregating the quantitative results and weighting the findings using each study's sample size revealed that the average error between the actual and the estimated project costs of Monte-Carlo simulation models (5.49%) performed better compared to the Bayesian model (5.95%), support vector machines (6.03%), case-based reasoning (11.69%), artificial neural networks (12.62%) and regression models (13.96%). This paper identified 41 factors and was grouped into three categories, namely: (1) factors relating to project characteristics; (2) organizational factors and (3) estimate factors based on the common classification used in the selected papers. The mean ranking analysis showed that most of the selected papers used project-specific factors more when estimating highway construction bid items than the other factors.

Originality/value

This paper contributes to the body of knowledge by analyzing and comparing the performance of highway cost estimation models, identifying and categorizing a comprehensive list of cost drivers to stimulate future studies in improving highway construction cost estimates.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 2 of 2