Search results

1 – 10 of 50
Open Access
Article
Publication date: 29 July 2020

Abdullah Alharbi, Wajdi Alhakami, Sami Bourouis, Fatma Najar and Nizar Bouguila

We propose in this paper a novel reliable detection method to recognize forged inpainting images. Detecting potential forgeries and authenticating the content of digital images is…

Abstract

We propose in this paper a novel reliable detection method to recognize forged inpainting images. Detecting potential forgeries and authenticating the content of digital images is extremely challenging and important for many applications. The proposed approach involves developing new probabilistic support vector machines (SVMs) kernels from a flexible generative statistical model named “bounded generalized Gaussian mixture model”. The developed learning framework has the advantage to combine properly the benefits of both discriminative and generative models and to include prior knowledge about the nature of data. It can effectively recognize if an image is a tampered one and also to identify both forged and authentic images. The obtained results confirmed that the developed framework has good performance under numerous inpainted images.

Details

Applied Computing and Informatics, vol. 20 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 28 November 2022

Ruchi Kejriwal, Monika Garg and Gaurav Sarin

Stock market has always been lucrative for various investors. But, because of its speculative nature, it is difficult to predict the price movement. Investors have been using both…

1072

Abstract

Purpose

Stock market has always been lucrative for various investors. But, because of its speculative nature, it is difficult to predict the price movement. Investors have been using both fundamental and technical analysis to predict the prices. Fundamental analysis helps to study structured data of the company. Technical analysis helps to study price trends, and with the increasing and easy availability of unstructured data have made it important to study the market sentiment. Market sentiment has a major impact on the prices in short run. Hence, the purpose is to understand the market sentiment timely and effectively.

Design/methodology/approach

The research includes text mining and then creating various models for classification. The accuracy of these models is checked using confusion matrix.

Findings

Out of the six machine learning techniques used to create the classification model, kernel support vector machine gave the highest accuracy of 68%. This model can be now used to analyse the tweets, news and various other unstructured data to predict the price movement.

Originality/value

This study will help investors classify a news or a tweet into “positive”, “negative” or “neutral” quickly and determine the stock price trends.

Details

Vilakshan - XIMB Journal of Management, vol. 21 no. 1
Type: Research Article
ISSN: 0973-1954

Keywords

Open Access
Article
Publication date: 3 August 2020

Djordje Cica, Branislav Sredanovic, Sasa Tesic and Davorin Kramar

Sustainable manufacturing is one of the most important and most challenging issues in present industrial scenario. With the intention of diminish negative effects associated with…

2226

Abstract

Sustainable manufacturing is one of the most important and most challenging issues in present industrial scenario. With the intention of diminish negative effects associated with cutting fluids, the machining industries are continuously developing technologies and systems for cooling/lubricating of the cutting zone while maintaining machining efficiency. In the present study, three regression based machine learning techniques, namely, polynomial regression (PR), support vector regression (SVR) and Gaussian process regression (GPR) were developed to predict machining force, cutting power and cutting pressure in the turning of AISI 1045. In the development of predictive models, machining parameters of cutting speed, depth of cut and feed rate were considered as control factors. Since cooling/lubricating techniques significantly affects the machining performance, prediction model development of quality characteristics was performed under minimum quantity lubrication (MQL) and high-pressure coolant (HPC) cutting conditions. The prediction accuracy of developed models was evaluated by statistical error analyzing methods. Results of regressions based machine learning techniques were also compared with probably one of the most frequently used machine learning method, namely artificial neural networks (ANN). Finally, a metaheuristic approach based on a neural network algorithm was utilized to perform an efficient multi-objective optimization of process parameters for both cutting environment.

Details

Applied Computing and Informatics, vol. 20 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 21 February 2024

Aysu Coşkun and Sándor Bilicz

This study focuses on the classification of targets with varying shapes using radar cross section (RCS), which is influenced by the target’s shape. This study aims to develop a…

Abstract

Purpose

This study focuses on the classification of targets with varying shapes using radar cross section (RCS), which is influenced by the target’s shape. This study aims to develop a robust classification method by considering an incident angle with minor random fluctuations and using a physical optics simulation to generate data sets.

Design/methodology/approach

The approach involves several supervised machine learning and classification methods, including traditional algorithms and a deep neural network classifier. It uses histogram-based definitions of the RCS for feature extraction, with an emphasis on resilience against noise in the RCS data. Data enrichment techniques are incorporated, including the use of noise-impacted histogram data sets.

Findings

The classification algorithms are extensively evaluated, highlighting their efficacy in feature extraction from RCS histograms. Among the studied algorithms, the K-nearest neighbour is found to be the most accurate of the traditional methods, but it is surpassed in accuracy by a deep learning network classifier. The results demonstrate the robustness of the feature extraction from the RCS histograms, motivated by mm-wave radar applications.

Originality/value

This study presents a novel approach to target classification that extends beyond traditional methods by integrating deep neural networks and focusing on histogram-based methodologies. It also incorporates data enrichment techniques to enhance the analysis, providing a comprehensive perspective for target detection using RCS.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 15 December 2023

Isuru Udayangani Hewapathirana

This study explores the pioneering approach of utilising machine learning (ML) models and integrating social media data for predicting tourist arrivals in Sri Lanka.

Abstract

Purpose

This study explores the pioneering approach of utilising machine learning (ML) models and integrating social media data for predicting tourist arrivals in Sri Lanka.

Design/methodology/approach

Two sets of experiments are performed in this research. First, the predictive accuracy of three ML models, support vector regression (SVR), random forest (RF) and artificial neural network (ANN), is compared against the seasonal autoregressive integrated moving average (SARIMA) model using historical tourist arrivals as features. Subsequently, the impact of incorporating social media data from TripAdvisor and Google Trends as additional features is investigated.

Findings

The findings reveal that the ML models generally outperform the SARIMA model, particularly from 2019 to 2021, when several unexpected events occurred in Sri Lanka. When integrating social media data, the RF model performs significantly better during most years, whereas the SVR model does not exhibit significant improvement. Although adding social media data to the ANN model does not yield superior forecasts, it exhibits proficiency in capturing data trends.

Practical implications

The findings offer substantial implications for the industry's growth and resilience, allowing stakeholders to make accurate data-driven decisions to navigate the unpredictable dynamics of Sri Lanka's tourism sector.

Originality/value

This study presents the first exploration of ML models and the integration of social media data for forecasting Sri Lankan tourist arrivals, contributing to the advancement of research in this domain.

Details

Journal of Tourism Futures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2055-5911

Keywords

Open Access
Article
Publication date: 21 May 2024

Yaohao Peng and João Gabriel de Moraes Souza

This study aims to evaluate the effectiveness of machine learning models to yield profitability over the market benchmark, notably in periods of systemic instability, such as the…

82

Abstract

Purpose

This study aims to evaluate the effectiveness of machine learning models to yield profitability over the market benchmark, notably in periods of systemic instability, such as the ongoing war between Russia and Ukraine.

Design/methodology/approach

This study made computational experiments using support vector machine (SVM) classifiers to predict stock price movements for three financial markets and construct profitable trading strategies to subsidize investors’ decision-making.

Findings

On average, machine learning models outperformed the market benchmarks during the more volatile period of the Russia–Ukraine war, but not during the period before the conflict. Moreover, the hyperparameter combinations for which the profitability is superior were found to be highly sensitive to small variations during the model training process.

Practical implications

Investors should proceed with caution when applying machine learning models for stock price forecasting and trading recommendations, as their superior performance for volatile periods – in terms of generating abnormal gains over the market – was not observed for a period of relative stability in the economy.

Originality/value

This paper’s approach to search for financial strategies that succeed in outperforming the market provides empirical evidence about the effectiveness of state-of-the-art machine learning techniques before and after the conflict deflagration, which is of potential value for researchers in quantitative finance and market professionals who operate in the financial segment.

Details

Revista de Gestão, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1809-2276

Keywords

Open Access
Article
Publication date: 24 May 2024

Rangan Gupta and Damien Moodley

Recent evidence from a linear econometric framework infers that housing search activity, captured from Google Trends data, can predict housing returns for the USA at a national…

Abstract

Purpose

Recent evidence from a linear econometric framework infers that housing search activity, captured from Google Trends data, can predict housing returns for the USA at a national and regional (metropolitan statistical area [MSA]) level. Based on search theory, the authors, however, postulate that search activity can also predict housing returns volatility. This study aims to explore the possibility of using online search activity to predict both housing returns and volatility.

Design/methodology/approach

Using a k-th order non-parametric causality-in-quantiles test allows us to test for predictability in a robust manner over the entire conditional distribution of both housing price returns and its volatility (i.e. squared returns) by controlling for nonlinearity and structural breaks that exist in the data.

Findings

The analysis over the monthly period of 2004:01 to 2021:01 produces results indicating that while housing search activity continues to predict aggregate US house price returns, barring the extreme ends of the conditional distribution, volatility is relatively strongly predicted over the entire quantile range considered. The results carry over to an alternative (the generalized autoregressive conditional heteroskedasticity-based) metric of volatility, higher (weekly)-frequency data (over January 2018–March 2021) and to over 84% of the 77 MSAs considered.

Originality/value

To the best of the authors’ knowledge, this is the first study regarding predictability of overall and regional US housing price returns and volatility using search activity, based on a non-parametric higher-order causality-in-quantiles framework, which is insightful to investors, policymakers and academics.

Details

International Journal of Housing Markets and Analysis, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1753-8270

Keywords

Open Access
Article
Publication date: 6 May 2024

Alejandro Rodriguez-Vahos, Sebastian Aparicio and David Urbano

A debate on whether new ventures should be supported with public funding is taking place. Adopting a position on this discussion requires rigorous assessments of implemented…

Abstract

Purpose

A debate on whether new ventures should be supported with public funding is taking place. Adopting a position on this discussion requires rigorous assessments of implemented programs. However, the few existing efforts have mostly focused on regional cases in developed countries. To fill this gap, this paper aims to measure the effects of a regional acceleration program in a developing country (Medellin, Colombia).

Design/methodology/approach

The economic notion of capabilities is used to frame the analysis of firm characteristics and productivity, which are hypothesized to be heterogeneous within the program. To test these relationships, propensity score matching is used in a sample of 60 treatment and 16,994 control firms.

Findings

This paper finds that treated firms had higher revenue than propensity score-matched controls on average, confirming a positive impact on growth measures. However, such financial growth is mostly observed in service firms rather than other economic sectors.

Research limitations/implications

Further evaluations, with a longer period and using more outcome variables, are suggested in the context of similar publicly funded programs in developing countries.

Originality/value

These findings tip the balance in favor of the literature suggesting supportive programs for high-growth firms as opposed to everyday entrepreneurship. This is an insight, especially under the context of an emerging economy, which has scarce funding to support entrepreneurship.

Details

Journal of Entrepreneurship in Emerging Economies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2053-4604

Keywords

Open Access
Article
Publication date: 22 November 2023

En-Ze Rui, Guang-Zhi Zeng, Yi-Qing Ni, Zheng-Wei Chen and Shuo Hao

Current methods for flow field reconstruction mainly rely on data-driven algorithms which require an immense amount of experimental or field-measured data. Physics-informed neural…

Abstract

Purpose

Current methods for flow field reconstruction mainly rely on data-driven algorithms which require an immense amount of experimental or field-measured data. Physics-informed neural network (PINN), which was proposed to encode physical laws into neural networks, is a less data-demanding approach for flow field reconstruction. However, when the fluid physics is complex, it is tricky to obtain accurate solutions under the PINN framework. This study aims to propose a physics-based data-driven approach for time-averaged flow field reconstruction which can overcome the hurdles of the above methods.

Design/methodology/approach

A multifidelity strategy leveraging PINN and a nonlinear information fusion (NIF) algorithm is proposed. Plentiful low-fidelity data are generated from the predictions of a PINN which is constructed purely using Reynold-averaged Navier–Stokes equations, while sparse high-fidelity data are obtained by field or experimental measurements. The NIF algorithm is performed to elicit a multifidelity model, which blends the nonlinear cross-correlation information between low- and high-fidelity data.

Findings

Two experimental cases are used to verify the capability and efficacy of the proposed strategy through comparison with other widely used strategies. It is revealed that the missing flow information within the whole computational domain can be favorably recovered by the proposed multifidelity strategy with use of sparse measurement/experimental data. The elicited multifidelity model inherits the underlying physics inherent in low-fidelity PINN predictions and rectifies the low-fidelity predictions over the whole computational domain. The proposed strategy is much superior to other contrastive strategies in terms of the accuracy of reconstruction.

Originality/value

In this study, a physics-informed data-driven strategy for time-averaged flow field reconstruction is proposed which extends the applicability of the PINN framework. In addition, embedding physical laws when training the multifidelity model leads to less data demand for model development compared to purely data-driven methods for flow field reconstruction.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 5 December 2023

Liqun Hu, Tonghui Wang, David Trafimow, S.T. Boris Choy, Xiangfei Chen, Cong Wang and Tingting Tong

The authors’ conclusions are based on mathematical derivations that are supported by computer simulations and three worked examples in applications of economics and finance…

Abstract

Purpose

The authors’ conclusions are based on mathematical derivations that are supported by computer simulations and three worked examples in applications of economics and finance. Finally, the authors provide a link to a computer program so that researchers can perform the analyses easily.

Design/methodology/approach

Based on a parameter estimation goal, the present work is concerned with determining the minimum sample size researchers should collect so their sample medians can be trusted as good estimates of corresponding population medians. The authors derive two solutions, using a normal approximation and an exact method.

Findings

The exact method provides more accurate answers than the normal approximation method. The authors show that the minimum sample size necessary for estimating the median using the exact method is substantially smaller than that using the normal approximation method. Therefore, researchers can use the exact method to enjoy a sample size savings.

Originality/value

In this paper, the a priori procedure is extended for estimating the population median under the skew normal settings. The mathematical derivation and with computer simulations of the exact method by using sample median to estimate the population median is new and a link to a free and user-friendly computer program is provided so researchers can make their own calculations.

Details

Asian Journal of Economics and Banking, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2615-9821

Keywords

Access

Only Open Access

Year

Last 6 months (50)

Content type

1 – 10 of 50