Search results

1 – 2 of 2
Article
Publication date: 1 January 2024

Shi Chen, Zhiyong Han, Qiang Zeng, Bing Wang, Liming Wang, Liuyang Guo and Yimin Shao

Hydro-viscous drive (HVD) clutches are widely used in equipment requiring soft start, such as fans and pumps, to transmit torque and adjust speed by changing the gap distance…

106

Abstract

Purpose

Hydro-viscous drive (HVD) clutches are widely used in equipment requiring soft start, such as fans and pumps, to transmit torque and adjust speed by changing the gap distance between friction pairs. This paper aims to propose a novel two-parameter evaluation method for HVD during the mixed lubrication stage. The objective is to develop an effective model that establishes the relationship between these parameters and the actual surface topography.

Design/methodology/approach

In the presented methods, the fractal features of the real manufacturing surface are calculated based on the power spectrum function by the ultra-depth three-dimensional microscope. After that, the hybrid friction model of the friction plate is established based on mixed elasto-hydrodynamic lubrication theory, boundary friction model and fractal theory. Then the torque and load bearing characteristics of the clutch are obtained, and the influences of the surface fractal features are investigated and discussed. Finally, the Weierstrass–Mandelbrot function is adopted for the surface topography characterization and evaluation.

Findings

The results indicate that the proposed method exhibits good accuracy, while the speed difference between the friction pair exceeds 2,500 rpm. It is concluded that this paper proposed a way to evaluate the torque and loading capacity of HVD considering the real manufacturing surface topography and is helpful for surface optimization.

Originality/value

The originality and value of this study lie in its development of a novel torque and load bearing capacity evaluation method for HVD in mixed lubrication stage, considering manufacturing surface topography and describing the real manufacturing surface.

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 September 2024

Dukun Xu, Yimin Deng and Haibin Duan

This paper aims to develop a method for tuning the parameters of the active disturbance rejection controller (ADRC) for fixed-wing unmanned aerial vehicles (UAVs). The bald eagle…

Abstract

Purpose

This paper aims to develop a method for tuning the parameters of the active disturbance rejection controller (ADRC) for fixed-wing unmanned aerial vehicles (UAVs). The bald eagle search (BES) algorithm has been improved, and a cost function has been designed to enhance the optimization efficiency of ADRC parameters.

Design/methodology/approach

A six-degree-of-freedom nonlinear model for a fixed-wing UAV has been developed, and its attitude controller has been formulated using the active disturbance rejection control method. The parameters of the disturbance rejection controller have been fine-tuned using the collaborative mutual promotion bald eagle search (CMP-BES) algorithm. The pitch and roll controllers for the UAV have been individually optimized to obtain the most effective controller parameters.

Findings

Inspired by the salp swarm algorithm (SSA), the interaction among individual eagles has been incorporated into the CMP-BES algorithm, thereby enhancing the algorithm's exploration capability. The efficient and accurate optimization ability of the proposed algorithm has been demonstrated through comparative experiments with genetic algorithm, particle swarm optimization, Harris hawks optimization HHO, BES and modified bald eagle search algorithms. The algorithm's capability to solve complex optimization problems has been further proven by testing on the CEC2017 test function suite. A transitional function for fitness calculation has been introduced to accelerate the ability of the algorithm to find the optimal parameters for the ADRC controller. The tuned ADRC controller has been compared with the classical proportional-integral-derivative (PID) controller, with gust disturbances introduced to the UAV body axis. The results have shown that the tuned ADRC controller has faster response times and stronger disturbance rejection capabilities than the PID controller.

Practical implications

The proposed CMP-BES algorithm, combined with a fitness function composed of transition functions, can be used to optimize the ADRC controller parameters for fixed-wing UAVs more quickly and effectively. The tuned ADRC controller has exhibited excellent robustness and disturbance rejection capabilities.

Originality/value

The CMP-BES algorithm and transitional function have been proposed for the parameter optimization of the active disturbance rejection controller for fixed-wing UAVs.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 2 of 2