Search results

1 – 2 of 2
Content available
Book part
Publication date: 6 November 2023

Abstract

Details

Higher Education in Emergencies: International Case Studies
Type: Book
ISBN: 978-1-83797-345-3

Article
Publication date: 11 May 2022

Rashmi Rekha Behera, Ashish Ranjan Dash and Anup Kumar Panda

The purpose of this paper is to design a cascaded Multilevel inverter with reduce number of switches for high power applications. This paper came up with an innovative three-phase…

Abstract

Purpose

The purpose of this paper is to design a cascaded Multilevel inverter with reduce number of switches for high power applications. This paper came up with an innovative three-phase multilevel inverter (MLI) topology, which is a cascaded structure based on classical three-legged voltage source inverter (VSI) bridges as an individual module. The prominent advantage of this topology is that it requires only one direct current (DC) link system. The main characteristic of it is that a higher number of voltage levels can be achieved with considerably a smaller number of semiconductor switches, which improves the reliability, power quality, cost and size of the system significantly.

Design/methodology/approach

The individual modules are cascaded through three-phase transformers to provide higher voltage at the output with the higher number of voltage levels. In this work, the phase-shifted pulse width modulation technique is implemented to verify the result.

Findings

The proposed topology is compared with three-phase cascaded H-bridge MLI (CHB-MLI) and a modified CHB-MLI topology and found better in many aspects. The proposed MLI can produce a higher number of voltage levels with fewer semiconductor switches and associated triggering circuitry. As the device count in the proposed MLI is less compared to other MLI discussed, it tends to have less switching and conduction loss which increases the efficiency and reliability. As the number of level increases, the voltage profile and the total harmonic distortion of the proposed MLI improves.

Originality/value

This is a transformer-based modular cascaded MLI, which is based on classical VSI bridges. Here in this topology, a single module provides all three phases. So, a single string of cascaded modules is enough for three-phase multilevel voltage generation.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Access

Year

Last 12 months (2)

Content type

1 – 2 of 2