Search results

1 – 10 of 82
Article
Publication date: 16 May 2024

Xingyu Qu, Zhenyang Li, Qilong Chen, Chengkun Peng and Qinghe Wang

In response to the severe lag in tracking the response of the Stewart stability platform after adding overload, as well as the impact of nonlinear factors such as load and…

Abstract

Purpose

In response to the severe lag in tracking the response of the Stewart stability platform after adding overload, as well as the impact of nonlinear factors such as load and friction on stability accuracy, a new error attenuation function and a parallel stable platform active disturbance rejection control (ADRC) strategy combining cascade extended state observer (ESO) are proposed.

Design/methodology/approach

First, through kinematic modeling of the Stewart platform, the relationship between the desired pose and the control quantities of the six hydraulic cylinders is obtained. Then, a linear nonlinear disturbance observer was established to observe noise and load, to enhance the system’s anti-interference ability. Finally, verification was conducted through simulation.

Findings

Finally, stability analysis was conducted on the cascaded observer. Experiments were carried out on a parallel stable platform with six degrees of freedom involving rotation and translation. In comparison to traditional PID and ADRC control methods, the proposed control strategy not only endows the stable platform with strong antiload disturbance capability but also exhibits faster response speed and higher stability accuracy.

Originality/value

A new error attenuation function is designed to address the lack of smoothness at d in the error attenuation function of the ADRC controller, reducing the system ripple caused by it. Finally, a combination of linear and nonlinear ESOs is introduced to enhance the system's response speed and its ability to observe noise and load disturbances. Stability analysis of the cascade observer is carried out, and experiments are conducted on a six-degree-of-freedom parallel stable platform with both rotational and translational motion.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 September 2024

Dukun Xu, Yimin Deng and Haibin Duan

This paper aims to develop a method for tuning the parameters of the active disturbance rejection controller (ADRC) for fixed-wing unmanned aerial vehicles (UAVs). The bald eagle…

Abstract

Purpose

This paper aims to develop a method for tuning the parameters of the active disturbance rejection controller (ADRC) for fixed-wing unmanned aerial vehicles (UAVs). The bald eagle search (BES) algorithm has been improved, and a cost function has been designed to enhance the optimization efficiency of ADRC parameters.

Design/methodology/approach

A six-degree-of-freedom nonlinear model for a fixed-wing UAV has been developed, and its attitude controller has been formulated using the active disturbance rejection control method. The parameters of the disturbance rejection controller have been fine-tuned using the collaborative mutual promotion bald eagle search (CMP-BES) algorithm. The pitch and roll controllers for the UAV have been individually optimized to obtain the most effective controller parameters.

Findings

Inspired by the salp swarm algorithm (SSA), the interaction among individual eagles has been incorporated into the CMP-BES algorithm, thereby enhancing the algorithm's exploration capability. The efficient and accurate optimization ability of the proposed algorithm has been demonstrated through comparative experiments with genetic algorithm, particle swarm optimization, Harris hawks optimization HHO, BES and modified bald eagle search algorithms. The algorithm's capability to solve complex optimization problems has been further proven by testing on the CEC2017 test function suite. A transitional function for fitness calculation has been introduced to accelerate the ability of the algorithm to find the optimal parameters for the ADRC controller. The tuned ADRC controller has been compared with the classical proportional-integral-derivative (PID) controller, with gust disturbances introduced to the UAV body axis. The results have shown that the tuned ADRC controller has faster response times and stronger disturbance rejection capabilities than the PID controller.

Practical implications

The proposed CMP-BES algorithm, combined with a fitness function composed of transition functions, can be used to optimize the ADRC controller parameters for fixed-wing UAVs more quickly and effectively. The tuned ADRC controller has exhibited excellent robustness and disturbance rejection capabilities.

Originality/value

The CMP-BES algorithm and transitional function have been proposed for the parameter optimization of the active disturbance rejection controller for fixed-wing UAVs.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 July 2024

Peng Gao, Xiuqin Su, Zhibin Pan, Maosen Xiao and Wenbo Zhang

This study aims to promote the anti-disturbance and tracking accuracy performance of the servo systems, in which a modified active disturbance rejection control (MADRC) scheme is…

Abstract

Purpose

This study aims to promote the anti-disturbance and tracking accuracy performance of the servo systems, in which a modified active disturbance rejection control (MADRC) scheme is proposed.

Design/methodology/approach

An adaptive radial basis function (ARBF) neural network is utilized to estimate and compensate dominant friction torque disturbance, and a parallel high-gain extended state observer (PHESO) is employed to further compensate residual and other uncertain disturbances. This parallel compensation structure reduces the burden of single ESO and improves the response speed of permanent magnet synchronous motor (PMSM) to hybrid disturbances. Moreover, the sliding mode control (SMC) rate is introduced to design an adaptive update law of ARBF.

Findings

Simulation and experimental results show that as compared to conventional ADRC and SMC algorithms, the position tracking error is only 2.3% and the average estimation error of the total disturbances is only 1.4% in the proposed MADRC algorithm.

Originality/value

The disturbance parallel estimation structure proposed in MADRC algorithm is proved to significantly improve the performance of anti-disturbance and tracking accuracy.

Article
Publication date: 13 February 2024

Yi Xia, Yonglong Li, Hongbin Zang, Yanpian Mao, Haoran Wang and Jialong Li

A switching depth controller based on a variable buoyancy system (VBS) is proposed to improve the performance of small autonomous underwater vehicles (AUVs). First, the…

Abstract

Purpose

A switching depth controller based on a variable buoyancy system (VBS) is proposed to improve the performance of small autonomous underwater vehicles (AUVs). First, the requirements of VBS for small AUVs are analyzed. Second, a modular VBS with high extensibility and easy integration is proposed based on the concepts of generality and interchangeability. Subsequently, a depth-switching controller is proposed based on the modular VBS, which combines the best features of the linear active disturbance rejection controller and the nonlinear active disturbance rejection controller.

Design/methodology/approach

The controller design and endurance of tiny AUVs are challenging because of their low environmental adaptation, limited energy resources and nonlinear dynamics. Traditional and single linear controllers cannot solve these problems efficiently. Although the VBS can improve the endurance of AUVs, the current VBS is not extensible for small AUVs in terms of the differences in individuals and operating environments.

Findings

The switching controller’s performance was examined using simulation with water flow and external disturbances, and the controller’s performance was compared in pool experiments. The results show that switching controllers have greater effectiveness, disturbance rejection capability and robustness even in the face of various disturbances.

Practical implications

A high degree of standardization and integration of VBS significantly enhances the performance of small AUVs. This will help expand the market for small AUV applications.

Originality/value

This solution improves the extensibility of the VBS, making it easier to integrate into different models of small AUVs. The device enhances the endurance and maneuverability of the small AUVs by adjusting buoyancy and center of gravity for low-power hovering and pitch angle control.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 November 2023

Abdeldjabar Benrabah, Farid Khoucha, Ali Raza and Mohamed Benbouzid

The purpose of this study is to improve the control performance of wind energy conversion systems (WECSs) by proposing a new sensorless, robust control strategy based on a Smith…

Abstract

Purpose

The purpose of this study is to improve the control performance of wind energy conversion systems (WECSs) by proposing a new sensorless, robust control strategy based on a Smith predictor active disturbance rejection control (SP-ADRC) associated with a speed/position estimator.

Design/methodology/approach

The estimator consists of a sliding mode observer (SMO) in combination with a phase-locked loop (PLL) to estimate the permanent magnet synchronous generator (PMSG) rotor position and speed. At the same time, the SP-ADRC is applied to the speed control loop of the variable-speed WECS control system to adapt strongly to dynamic characteristics under parameter uncertainties and disturbances.

Findings

Numerical simulations are conducted to evaluate the speed tracking performances under various wind speed profiles. The results show that the proposed sensorless speed control improves the accuracy of rotor speed and position estimation and provides better power tracking performance than a regular ADRC controller under fast wind speed variations.

Practical implications

This paper offers a new approach for designing sensorless, robust control for PMSG-based WECSs.

Originality/value

A new sensorless, robust control is proposed to improve the stability and tracking performance of PMSG-based WECSs. The SP-ADRC control attenuates the effects of parameter uncertainties and disturbances and eliminates the time-delay impact. The sensorless control design based on SMO and PLL improves the accuracy of rotor speed estimation and reduces the chattering problem of traditional SMO. The obtained results support the theoretical findings.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 May 2024

Qingli Lu, Ruisheng Sun and Yu Lu

This paper aims to propose and verify an improved cascade active disturbance rejection control (ADRC) scheme based on output redefinition for hypersonic vehicles (HSVs) with…

Abstract

Purpose

This paper aims to propose and verify an improved cascade active disturbance rejection control (ADRC) scheme based on output redefinition for hypersonic vehicles (HSVs) with nonminimum phase characteristic and model uncertainties.

Design/methodology/approach

To handle the nonminimum phase characteristic, a tuning factor stabilizing internal dynamics is introduced to redefine the system output states; its effective range is determined by analyzing Byrnes–Isidori normalized form of the redefined system. The extended state observers (ESOs) are used to estimate the uncertainties, which include matched and mismatched items in the system. The controller compensates observations in real time and appends integral terms to improve robustness against the estimation errors of ESOs.

Findings

Theoretical and simulation results show that the stability of internal dynamics is guaranteed by the tuning factor and the tracking errors of external commands are globally asymptotically stable.

Practical implications

The control scheme in this paper is expected to generate a reliable way for dealing with nonminimum phase characteristic and model uncertainties of HSVs.

Originality/value

In the framework of ADRC, a concise form of redefined outputs is proposed, in which the tuning factor performs a decisive role in stabilizing the internal dynamics of HSVs. By introducing an integral term into the cascade ADRC scheme, the compensation accuracy of matched and mismatched disturbances is improved.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 31 October 2023

Lei Xiong, Hongjun Shi and Qixin Zhu

This study aims to construct a novel maximum power tracking control system for the direct drive permanent magnet synchronous generator (PMSG) of the wind energy conversion system…

Abstract

Purpose

This study aims to construct a novel maximum power tracking control system for the direct drive permanent magnet synchronous generator (PMSG) of the wind energy conversion system (WECS) to solve the following problems: how to effectively eliminate the system’s model parameter disturbances and speed up the dynamic performance of the system; and how to eliminate harmonics in WECS under different wind speeds.

Design/methodology/approach

To obtain the maximum output power of PMSG at WECS under different wind speeds, the following issues should be considered: (1) how to effectively eliminate the system’s model parameter disturbances and speed up the dynamic performance of the system; and (2) how to suppress system harmonics. For Problem 1, adding dq compensation factors to active disturbance rejection control (ADRC) for the current loop realizes the dq axis decoupling control, which speeds up the dynamic performance of the system. For Problem 2, the resonant controller is introduced into the ADRC for the current loop to suppress harmonic current in WECS under different wind speeds.

Findings

The simulation results demonstrate that the proposed control method is simpler and more reliable than conventional controllers for maximum power tracking.

Originality/value

Compared with traditional controllers, the proposed controller can speed up the dynamic performance of the system and suppress the current harmonic effectively, thus better achieving maximum power tracking.

Details

Robotic Intelligence and Automation, vol. 43 no. 6
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 21 May 2024

Jun Tian, Xungao Zhong, Xiafu Peng, Huosheng Hu and Qiang Liu

Visual feedback control is a promising solution for robots work in unstructured environments, and this is accomplished by estimation of the time derivative relationship between…

Abstract

Purpose

Visual feedback control is a promising solution for robots work in unstructured environments, and this is accomplished by estimation of the time derivative relationship between the image features and the robot moving. While some of the drawbacks associated with most visual servoing (VS) approaches include the vision–motor mapping computation and the robots’ dynamic performance, the problem of designing optimal and more effective VS systems still remains challenging. Thus, the purpose of this paper is to propose and evaluate the VS method for robots in an unstructured environment.

Design/methodology/approach

This paper presents a new model-free VS control of a robotic manipulator, for which an adaptive estimator aid by network learning is proposed using online estimation of the vision–motor mapping relationship in an environment without the knowledge of statistical noise. Based on the adaptive estimator, a model-free VS schema was constructed by introducing an active disturbance rejection control (ADRC). In our schema, the VS system was designed independently of the robot kinematic model.

Findings

The various simulations and experiments were conducted to verify the proposed approach by using an eye-in-hand robot manipulator without calibration and vision depth information, which can improve the autonomous maneuverability of the robot and also allow the robot to adapt its motion according to the image feature changes in real time. In the current method, the image feature trajectory was stable in the camera field range, and the robot’s end motion trajectory did not exhibit shock retreat. The results showed that the steady-state errors of image features was within 19.74 pixels, the robot positioning was stable within 1.53 mm and 0.0373 rad and the convergence rate of the control system was less than 7.21 s in real grasping tasks.

Originality/value

Compared with traditional Kalman filtering for image-based VS and position-based VS methods, this paper adopts the model-free VS method based on the adaptive mapping estimator combination with the ADRC controller, which is effective for improving the dynamic performance of robot systems. The proposed model-free VS schema is suitable for robots’ grasping manipulation in unstructured environments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 31 October 2023

Zhizhong Guo, Fei Liu, Yuze Shang, Zhe Li and Ping Qin

This research aims to present a novel cooperative control architecture designed specifically for roads with variations in height and curvature. The primary objective is to enhance…

Abstract

Purpose

This research aims to present a novel cooperative control architecture designed specifically for roads with variations in height and curvature. The primary objective is to enhance the longitudinal and lateral tracking accuracy of the vehicle.

Design/methodology/approach

In addressing the challenges posed by time-varying road information and vehicle dynamics parameters, a combination of model predictive control (MPC) and active disturbance rejection control (ADRC) is employed in this study. A coupled controller based on the authors’ model was developed by utilizing the capabilities of MPC and ADRC. Emphasis is placed on the ramifications of road undulations and changes in curvature concerning control effectiveness. Recognizing these factors as disturbances, measures are taken to offset their influences within the system. Load transfer due to variations in road parameters has been considered and integrated into the design of the authors’ synergistic architecture.

Findings

The framework's efficacy is validated through hardware-in-the-loop simulation. Experimental results show that the integrated controller is more robust than conventional MPC and PID controllers. Consequently, the integrated controller improves the vehicle's driving stability and safety.

Originality/value

The proposed coupled control strategy notably enhances vehicle stability and reduces slip concerns. A tailored model is introduced integrating a control strategy based on MPC and ADRC which takes into account vertical and longitudinal force variations and allowing it to effectively cope with complex scenarios and multifaceted constraints problems.

Article
Publication date: 10 January 2024

Xin Cai, Xiaozhou Zhu and Wen Yao

Quadrotors have been applied in various fields. However, because the quadrotor is subject to multiple disturbances, consisting of external disturbances, actuator faults and…

Abstract

Purpose

Quadrotors have been applied in various fields. However, because the quadrotor is subject to multiple disturbances, consisting of external disturbances, actuator faults and parameter uncertainties, it is difficult to control the unmanned aerial vehicle (UAV) to achieve high-precision tracking performance. This paper aims to design a safety controller that uses observer and neural network method to improve the tracking performance of UAV under multiple disturbances. The experiments prove that this method is effective.

Design/methodology/approach

First, to actively estimate and compensate the synthetic uncertainties of the system, a finite-time extended state observer is investigated, and the disturbances are transformed into the extended state of the system for estimation. Second, an adaptive neural network controller that does not accurately require the dynamic model knowledge is designed based on the estimated value, where the weights of the neural network can be dynamically adjusted by the adaptive law. Furthermore, the finite-time bounded convergence of the proposed observer and the stability of the system are proved through homogeneous theory and Lyapunov method.

Findings

The figure-“8” climbing flight simulation and real flight experiments illustrate that the proposed safety control strategy has good tracking performance.

Originality/value

This paper proposes the safety control structure of the UAV, which combines the extended state observer with the neural network method. Numerical simulation results and actual flight experiments demonstrate the effectiveness of the proposed control strategy.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 82