Search results

1 – 2 of 2
Open Access
Article
Publication date: 16 July 2021

Nikolay Andreevich Moldovyan and Dmitriy Nikolaevich Moldovyan

The practical purpose of this research is to propose a candidate for post-quantum signature standard that is free of significant drawback of the finalists of the NIST world…

Abstract

Purpose

The practical purpose of this research is to propose a candidate for post-quantum signature standard that is free of significant drawback of the finalists of the NIST world competition, which consists in the large size of the signature and the public key. The practical purpose is to propose a fundamentally new method for development of algebraic digital signature algorithms.

Design/methodology/approach

The proposed method is distinguished by the use of two different finite commutative associative algebras as a single algebraic support of the digital signature scheme and setting two different verification equation for a single signature. A single public key is computed as the first and the second public keys, elements of which are computed exponentiating two different generators of cyclic groups in each of the algebras.

Findings

Additionally, a scalar multiplication by a private integer is performed as final step of calculation of every element of the public key. The same powers and the same scalar values are used to compute the first and the second public keys by the same mathematic formulas. Due to such design, the said generators are kept in secret, providing resistance to quantum attacks. Two new finite commutative associative algebras, multiplicative group of which possesses four-dimensional cyclicity, have been proposed as a suitable algebraic support.

Originality/value

The introduced method is novel and includes new techniques for designing algebraic signature schemes that resist quantum attacks. On its base, a new practical post-quantum signature scheme with relatively small size of signature and public key is developed.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 21 March 2024

Hedi Khedhiri and Taher Mkademi

In this paper we talk about complex matrix quaternions (biquaternions) and we deal with some abstract methods in mathematical complex matrix analysis.

Abstract

Purpose

In this paper we talk about complex matrix quaternions (biquaternions) and we deal with some abstract methods in mathematical complex matrix analysis.

Design/methodology/approach

We introduce and investigate the complex space HC consisting of all 2 × 2 complex matrices of the form ξ=z1+iw1z2+iw2z2iw2z1+iw1, (z1,w1,z2,w2)C4.

Findings

We develop on HC a new matrix holomorphic structure for which we provide the fundamental operational calculus properties.

Originality/value

We give sufficient and necessary conditions in terms of Cauchy–Riemann type quaternionic differential equations for holomorphicity of a function of one complex matrix variable ξHC. In particular, we show that we have a lot of holomorphic functions of one matrix quaternion variable.

Details

Arab Journal of Mathematical Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1319-5166

Keywords

1 – 2 of 2