Search results

1 – 1 of 1
Article
Publication date: 13 June 2024

Chen Yu and Wei Tian

This paper aims to investigate the application of 3D printing technology, particularly using sand-type materials, in the creation of artificial rock models for rock mechanics…

Abstract

Purpose

This paper aims to investigate the application of 3D printing technology, particularly using sand-type materials, in the creation of artificial rock models for rock mechanics experimentation.

Design/methodology/approach

Using a comprehensive analysis, this research explores the utilization of 3D printing technology in rock mechanics. Sand-type materials are specifically investigated for their ability to replicate natural rock characteristics. The methodology involves a review of recent achievements and experimentation in this field.

Findings

The study reveals that sand-type 3D printing materials demonstrate comparable properties to natural rocks, including brittle characteristics, surface roughness, microstructural features and crack propagation patterns.

Research limitations/implications

While the research establishes the viability of sand-type 3D printing materials, it acknowledges limitations such as the need for further exploration and validation. Generalizability may be constrained, warranting additional research to address these limitations.

Originality/value

This research contributes insights into the potential application of sand-type 3D printing materials in indoor rock physics experiments. The findings may guide future endeavors in fabricating rock specimens with consistent structures for practical rock mechanics applications.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Access

Year

Last month (1)

Content type

Earlycite article (1)
1 – 1 of 1