Search results

1 – 1 of 1
Article
Publication date: 8 December 2020

Aleksandr Viktorovich Zaichuk, Aleksandra Andreevna Amelina, Yurii Sergeevich Hordieiev, Liliya Frolova and Viktoriia Dmitrievna Ivchenko

The purpose of this paper is to conduct the directed synthesis of blue-colour aluminate spinel pigments based on spent aluminium–cobalt–molybdenum (ACM) catalyst and to study…

Abstract

Purpose

The purpose of this paper is to conduct the directed synthesis of blue-colour aluminate spinel pigments based on spent aluminium–cobalt–molybdenum (ACM) catalyst and to study peculiar features of mineral formation processes and changes in their colour indices depending on composition and firing temperature.

Design/methodology/approach

Aluminate spinel ceramic pigments with specified colour indices were synthesised by directed formation of their mineral composition and identification of the most rational technological parameters of production. Mineral composition of synthesised pigments was evaluated by X-ray phase analysis. The colour indices of pigments and pigment-containing glaze coatings were studied on the comparator colour. The chemical resistance of pigments was determined by loss of their weight loss after boiling in 1 N hydrochloric acid solution and 1 N sodium hydroxide solution.

Findings

Peculiar features of formation of the mineral composition of aluminate spinel pigments based on the ACM catalyst were studied. The expediency of using magnesium and zinc oxides in their composition has been proved. It is found that for the formation of stable pigments of intense blue colour, a concentration of cobalt (II) oxide in the amount of 0.5 mol is sufficient, which is 23.1 Wt.%. The colour of such pigments is determined by the ratios of cobalt, magnesium and zinc aluminates, which form a spinel solid solution.

Practical implications

The use of developed aluminate spinel pigments provides obtaining of high-quality glass coatings of blue colour, in particular, for ceramics.

Originality/value

Aluminium oxide in the spent ACM catalyst is predominantly in the active form (of amorphous aluminium hydroxide and y-Al2O3). This is a prerequisite for the use of this waste material as a complete substitute for chemically pure Al2O3 in the technology of aluminate spinel pigments and reduction of their firing temperature. Besides, spent ACM catalyst already contains 5 Wt.% of expensive cobalt (II) oxide in the form of stable colour-bearing phase CoAl2O4.

Details

Pigment & Resin Technology, vol. 50 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Access

Year

Content type

Article (1)
1 – 1 of 1