Search results

1 – 3 of 3
Article
Publication date: 21 July 2023

Jinhua Sun

Steel-reinforced concrete-filled steel tubular (SRCFST) columns have been increasingly popular in engineering practice for the columns' excellent seismic and fire performance…

Abstract

Purpose

Steel-reinforced concrete-filled steel tubular (SRCFST) columns have been increasingly popular in engineering practice for the columns' excellent seismic and fire performance. Significant design progress guidance has been made through continuous numerical and experimental research in recent years. This paper tested and analysed the residual loading capacity of SRCFST columns under axial loading after experiencing non-uniform ISO-834 standard fire.

Design/methodology/approach

The experimental research covered the main parameter of heating conditions, 1-side and 2-side fire, through two specimens. Two specimens were heated and loaded simultaneously in the furnace for 240 min. After cooling, the columns were moved to the hydraulic loading system and loaded to failure to determine the columns' residual capacity.

Findings

The experimental results indicated that the non-uniform heating area plays an essential role in the overall performance of SRCFST columns, the increasing heating area of columns results in lower residual loading capacity and stiffness. The SRCFST columns still had a high loading capacity after heating and loading in the fire.

Originality/value

The comparison of experimental data against design results showed that the design method generated a 16% safety margin for S2H4 and a 39% safety margin for S1H4.

Details

Journal of Structural Fire Engineering, vol. 15 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 2 March 2023

Aamir Hassan and Javed Ahmad Bhat

Concrete-filled double skin tube (CFDST) columns are considered one of the most effective steel-concrete composite sections owing to the higher load carrying capacity as compared…

Abstract

Purpose

Concrete-filled double skin tube (CFDST) columns are considered one of the most effective steel-concrete composite sections owing to the higher load carrying capacity as compared to its counterpart concrete-filled tube (CFT) columns. This paper aims to numerically investigate the performance of axially loaded, circular CFDST short columns, with the innovative strengthening technique of providing stiffeners in outer tubes. Circular steel hollow sections have been adopted for inner as well as outer tubes, while varying the length of rectangular steel stiffeners, fixed inside the outer tubes only, to check the effect of stiffeners in partially and full-length stiffened CFDST columns.

Design/methodology/approach

The behaviour of these CFDST columns is investigated numerically by using a verified finite element analysis (FEA) model from the ABAQUS. The behaviour of 20-unstiffened, 80-partially stiffened and 20-full-length stiffened CFDST columns is studied, while varying the strength of steel (fyo = 250–750 MPa) and concrete (30–90 MPa).

Findings

The FEA results are verified by comparing them with the previous test results. FEA study has exhibited that, there is a 7%–25% and 39%–49% increase in peak-loads in partially stiffened and full-length stiffened CFDST columns, respectively, compared to unstiffened CFDST columns.

Originality/value

Enhanced strength has been observed in partially stiffened and full-length stiffened CFDST columns as compared to unstiffened CFDST columns. Also, a significant effect of strength of concrete has not been observed as compared to the strength of steel.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 April 2024

Jun Zhao, Hao Zhang, Junwei Liu, Yanfen Gong, Songqiang Wan, Long Liu, Jiacheng Li, Ziyi Song, Shiyao Zhang and Qingrui Li

Based on the weak seismic performance and low ductility of coupled shear walls, engineered cementitious composites (ECC) is utilized to strengthen it to solve the deformation…

Abstract

Purpose

Based on the weak seismic performance and low ductility of coupled shear walls, engineered cementitious composites (ECC) is utilized to strengthen it to solve the deformation problem in tall buildings more effectively and study its mechanical properties more deeply.

Design/methodology/approach

The properties of reinforced concrete coupled shear wall (RCCSW) and reinforced ECC coupled shear wall (RECSW) have been studied by numerical simulation, which is in good agreement with the experimental results. The reliability of the finite element model is verified. On this basis, a detailed parameter study is carried out, including the strength and reinforcement ratio of longitudinal rebar, the placement height of ECC in the wall limb and the position of ECC connecting beams. The study indexes include failure mode and the skeleton curve.

Findings

The results suggest that the bearing capacity of RECSW is significantly affected by the ratio of longitudinal rebar. When the ratio of longitudinal rebar increases from 0.47% to 3.35%, the bearing capacity of RECSW increases from 250 kN to 303 kN, an increase of 21%. The strength of longitudinal rebar has little influence on the bearing capacity of RECSW. When the strength of the longitudinal rebar increases, the bearing capacity of RECSW increases little. The failure mode of RECSW can be improved by lowering the casting height of the ECC beam in a certain range.

Originality/value

In this paper, ECC is used to strengthen the coupled shear wall, and the accuracy of the finite element model is verified from the failure mode and skeleton curve. On this basis, the casting height of the ECC casting wall limb, the strength and reinforcement ratio of longitudinal rebar and the position of the ECC beam are studied in detail.

Details

International Journal of Structural Integrity, vol. 15 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Access

Year

Last 6 months (3)

Content type

Article (3)
1 – 3 of 3