To read this content please select one of the options below:

Utilizing health-related text on social media for depression research: themes and methods

Sumei Yao (Center for Studies of Information Resources, Wuhan University, Wuhan, China)
Fan Wang (Center for Studies of Information Resources, Wuhan University, Wuhan, China)
Jing Chen (School of Information Management, Central China Normal University, Wuhan, China)
Quan Lu (Center for Studies of Information Resources, Wuhan University, Wuhan, China) (Big Data Institute, Wuhan University, Wuhan, China)

Library Hi Tech

ISSN: 0737-8831

Article publication date: 12 September 2023

246

Abstract

Purpose

Social media texts as a data source in depression research have emerged as a significant convergence between Information Management and Public Health in recent years. This paper aims to sort out the depression-related study conducted on the text on social media, with particular attention to the research theme and methods.

Design/methodology/approach

The authors finally selected research articles published in Web of Science, Wiley, ACM Digital Library, EBSCO, IEEE Xplore and JMIR databases, covering 57 articles.

Findings

(1) According to the coding results, Depression Prediction and Linguistic Characteristics and Information Behavior are the two most popular themes. The theme of Patient Needs has progressed over the past few years. Still, there is a lesser focus on Stigma and Antidepressants. (2) Researchers prefer quantitative methods such as machine learning and statistical analysis to qualitative ones. (4) According to the analysis of the data collection platforms, more researchers used comprehensive social media sites like Reddit and Facebook than depression-specific communities like Sunforum and Alonelylife.

Practical implications

The authors recommend employing machine learning and statistical analysis to explore factors related to Stigmatization and Antidepressants thoroughly. Additionally, conducting mixed-methods studies incorporating data from diverse sources would be valuable. Such approaches would provide insights beneficial to policymakers and pharmaceutical companies seeking a comprehensive understanding of depression.

Originality/value

This article signifies a pioneering effort in systematically gathering and examining the themes and methodologies within the intersection of health-related texts on social media and depression.

Keywords

Acknowledgements

Funding: This study was supported by the National Social Science Fund of China (No: 20ATQ008). Special thanks to the experimental equipment provided by National Demonstration Center for Empirical Library and Information Science Education of the School of Information Management, Wuhan University.

Citation

Yao, S., Wang, F., Chen, J. and Lu, Q. (2023), "Utilizing health-related text on social media for depression research: themes and methods", Library Hi Tech, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/LHT-02-2023-0076

Publisher

:

Emerald Publishing Limited

Copyright © 2023, Emerald Publishing Limited

Related articles