To read this content please select one of the options below:

Elastohydrodynamic lubrication of circular contacts at pure squeeze motion with micropolar lubricants

Li Ming Chu (Department of Applied Science, Bachelor Program of Green and Information Technology, National Taitung University, Taitung, Taiwan)
Jaw-Ren Lin (Department of Mechanical Engineering, Naya Institute of Technology, Jhongli, Taiwan)
Yuh-Ping Chang (Department of Mechanical Engineering, Kun Shan University, Tainan, Taiwan)
Chung-Chun Wu (Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan)

Industrial Lubrication and Tribology

ISSN: 0036-8792

Article publication date: 12 September 2016

167

Abstract

Purpose

This paper aims to explore pure squeeze elastohydrodynamic lubrication (EHL) motion of circular contacts with micropolar lubricants under constant load. The proposed model can reasonably calculate the pressure distributions, film thicknesses and normal squeeze velocities during the pure squeeze process.

Design/methodology/approach

The transient modified Reynolds equation is derived in polar coordinates using micropolar fluids theory. The finite difference method and the Gauss–Seidel iteration method are used to solve the transient modified Reynolds equation, the elasticity deformation equation, load balance equation and lubricant rheology equations simultaneously.

Findings

The simulation results reveal that the effect of the micropolar lubricant is equivalent to enhancing the lubricant viscosity. As the film thickness is enlarged, the central pressure and film thickness for micropolar lubricants are larger than those of Newtonian fluids under the same load in the elastic deformation stage. The greater the coupling parameter (N), the greater the maximum central pressure. However, the smaller the characteristic length (L), the greater the maximum central pressure. The time needed to achieve maximum central pressure increases with increasing N and L.

Originality/value

A numerical method for general applications was developed to investigate the effects of the micropolar lubricants at pure squeeze EHL motion of circular contacts under constant load.

Keywords

Acknowledgements

Conflict of interest: The authors declare that there is no conflict of interests regarding the publication of this article.

The authors would like to express their appreciation to the Ministry of Science and Technology (MOST 103-2221-E-218-036) in Taiwan, R.O.C., for financial support.

Citation

Chu, L.M., Lin, J.-R., Chang, Y.-P. and Wu, C.-C. (2016), "Elastohydrodynamic lubrication of circular contacts at pure squeeze motion with micropolar lubricants", Industrial Lubrication and Tribology, Vol. 68 No. 6, pp. 640-646. https://doi.org/10.1108/ILT-10-2015-0139

Publisher

:

Emerald Group Publishing Limited

Copyright © 2016, Emerald Group Publishing Limited

Related articles