
Publication and maintenance of
RDB2RDF views externally
materialized in enterprise

knowledge graphs
Vania Vidal

Department of Computing, Federal University of Cear�a, Fortaleza, Brazil

Valéria Magalhães Pequeno
Centro de Investigaçäo em Tecnologias–Autónoma TechLab, Departamento de

Engenharias e Ciência da Computação, Universidade Autónoma de Lisboa Luís de
Camões, Lisboa, Portugal and Departamento de Engenharia Marítima,
Escola Superior Náutica Infante D Henrique, Paco d’Arcos, Portugal

Narciso Moura Arruda Júnior
Department of Computing, Federal University of Ceará, Fortaleza, Brazil, and

Marco Antonio Casanova
Department of Informatics, Pontifical Catholic University of Rio de Janeiro,

Rio de Janeiro, Brazil

Abstract
Purpose – Enterprise knowledge graphs (EKG) in resource description framework (RDF) consolidate
and semantically integrate heterogeneous data sources into a comprehensive dataspace. However, to
make an external relational data source accessible through an EKG, an RDF view of the underlying
relational database, called an RDB2RDF view, must be created. The RDB2RDF view should be
materialized in situations where live access to the data source is not possible, or the data source imposes
restrictions on the type of query forms and the number of results. In this case, a mechanism for
maintaining the materialized view data up-to-date is also required. The purpose of this paper is to
address the problem of the efficient maintenance of externally materialized RDB2RDF views.

Design/methodology/approach – This paper proposes a formal framework for the incremental
maintenance of externally materialized RDB2RDF views, in which the server computes and publishes
changesets, indicating the difference between the two states of the view. The EKG system can then
download the changesets and synchronize the externally materialized view. The changesets are
computed based solely on the update and the source database state and require no access to the content
of the view.

Findings – The central result of this paper shows that changesets computed according to the formal
framework correctly maintain the externally materialized RDB2RDF view. The experiments indicate
that the proposed strategy supports live synchronization of large RDB2RDF views and that the time
taken to compute the changesets with the proposed approach was almost three orders of magnitude

This work was partly funded by FAPERJ under grant E-26/200.834/2021; by CAPES under grants
88881.310592 – 2018/01; and by CNPq under grant 305587/2021-8. The support of the Universidade
Autónoma de Lisboa Luis de Camões is also greatfully acknowledged.

RDB2RDF
views

255

Received 28 February 2022
Revised 6May 2022

Accepted 3 June 2022

International Journal of Web
Information Systems
Vol. 18 No. 5/6, 2022

pp. 255-285
© EmeraldPublishingLimited

1744-0084
DOI 10.1108/IJWIS-02-2022-0043

The current issue and full text archive of this journal is available on Emerald Insight at:
https://www.emerald.com/insight/1744-0084.htm

http://dx.doi.org/10.1108/IJWIS-02-2022-0043

smaller than partial rematerialization and three orders of magnitude smaller than full
rematerialization.

Originality/value – The main idea that differentiates the proposed approach from previous work on
incremental view maintenance is to explore the object-preserving property of typical RDB2RDF views so that
the solution can deal with views with duplicates. The algorithms for the incremental maintenance of relational
views with duplicates published in the literature require querying the materialized view data to precisely
compute the changesets. By contrast, the approach proposed in this paper requires no access to view data.
This is important when the view is maintained externally, because accessing a remote data source may be too
slow.

Keywords RDF view maintenance, RDF view, Enterprise knowledge graph, Linked data,
Relational database

Paper type Research paper

1. Introduction
Enterprise knowledge graphs (EKG) semantically integrate heterogeneous data sources into
a comprehensive dataspace (Pan et al., 2017). An EKG provides a unified data layer that is
semantically connected to the data sources thereby providing applications with integrated
access to the data sources. In this way, an EKG can support unplanned ad hoc queries and
data exploration without requiring a time-consuming data preprocessing step.

A key element of an EKG is the domain ontology, which specifies the common vocabulary
for integrating data exported by the data sources. The domain ontology acts as a semantic
layer that combines and enriches the data stored in data sources. It represents how data are
organized and their intended meaning. Therefore, users can query the ontology transparently,
without having to deal with the data source schemes. This article concentrates on domain
ontologies defined in resource description framework (RDF).

A data source may export an RDF view, which is defined by a set of mapping rules that
maps concepts of the data source to concept of the RDF domain ontology. This article
focuses on RDF views of relational databases, called RDB2RDF views.

A view may be virtual or materialized. In the virtual approach, view data are retrieved
directly from the data source at query time. This is achieved by unfolding the view mappings,
thus translating user queries into queries over the data sources. The advantage of virtual views
is that data are always up-to-date with respect to the data sources. On the other hand, it may
not be feasible to implement a virtual view, if live access, that is, runtime access, to the data
source is in some way restricted. This approach, called virtual Knowledge graph (VKG), has
been implemented in several systems (Kalayci et al., 2020; Calvanese et al., 2020; Ding et al.,
2021) and adopted in awide range of use cases (Xiao et al., 2019).

In the materialized approach, view data are materialized and stored. An externally
materialized view is a materialized view which is stored in a system different from that of the
data source. Materialized views tend to achieve better query performance than virtual views.
Also, they are the only alternative when live access to the data source is restricted. However,
a materialized view requires some mechanisms to maintain its data when the underlying
data source is updated. The main contribution of this article is an efficient maintenance
algorithm for externally materialized RDB2RDF views.

Basically, there are two strategies for materialized view maintenance. Rematerialization
recomputes view data at preestablished times, whereas incremental maintenance periodically
modifies part of the view data to reflect updates to the data source. Previous research have
shown that incremental maintenance generally outperforms full view rematerialization
(Abiteboul et al., 1998; Ali et al., 2000; Ceri and Widom, 1991). Incremental maintenance also
enables live synchronization of the view data with respect to the data source, that is, it enables

IJWIS
18,5/6

256

maintaining view data up-to-date with only a small delay. This is an important property when
the data source is frequently updated.

A strategy for materialized view maintenance is for a data source to compute and publish
changesets. A database changeset indicates the difference between two states of the
database, and a view changeset indicates the difference between two states of a view. From
this point on, the term changeset will be used as a shorthand for view changeset. A
materialized view maintenance algorithm can then download changesets and use them to
update the materialized view data. For instance, DBpedia (DBp, Last accessed in Feb/2022)
and LinkedGeoData (LG, Last accessed in Feb/2022) publish their changesets in a public
folder. The computation of changesets can be challenging for externally materialized views
when the database server has no access to the view data. Indeed, in the case of views with
duplicates (Griffin and Libkin, 1995), the view maintenance algorithms published in the
literature require the use of the materialized view data to compute the changeset.

This article proposes a novel strategy (see Figure 1) for the incremental maintenance of
externally materialized RDB2RDF views. The strategy adopted triggers to compute and
publish changesets of the relational database and features a synchronization tool that
downloads the changesets and synchronizes the externally materialized RDB2RDF view.

Four design goals guided the development of the proposed strategy:
(1) simplicity – minimizing the complexity associated with the creation of the

infrastructure responsible for the construction of the changesets;
(2) efficiency of operation – identifying the minimal data that permits the construction

of changesets that correctly maintain the view in the face of updates on the source
database;

(3) no access of the content of the view – computing the changeset based solely on the
update and the source database state; and

(4) self-maintenance of RDB2RDF views – computing the new view state based solely
on the changeset and the view state.

The proposed strategy is based on three key ideas. First, the authors noted that RDB2RDF
views typically have the so-called object-preserving property. That is, they preserve the base
entities (objects) of the source database, rather than creating new entities (Motschnig-Pitrik,
2000). Therefore, an instance of the RDF view corresponds to a pivot tuple in the database, and
both represent the same real-world object. The main ideas that differentiate the proposed

Figure 1.
Incremental

maintenance of
externally

materialized
RDB2RDF view

RDB2RDF
views

257

approach from previous work on relational view maintenance is to explore the object-
preserving property of typical RDB2RDF views, which allows the identification of the specific
pivot tuples that are relevant to a data source update. Only the portion of the view associated
with the relevant tuples should be rematerialized. One may then characterize the approach as
that of “tracking the relevant tuples in the pivot relations for a given update” rather than
“tracking the updated triples in the view for a given update,” as adopted by view maintenance
algorithms published in the literature.

Second, the authors introduce a formalism to specify object preserving-view mappings.
The formalism is based on first-order logic and has been widely adopted in Ontology-Based
Data Access (Sequeda et al., 2014), data exchange (Murlak et al., 2014) and data integration
(Lenzerini, 2002) systems. The formalism makes it easier to understand the semantics of the
mapping and provides sufficient information to support:

� the identification of the tuples that are relevant to a data source update;
� the automatic construction of the procedures that actually compute the changesets;

and
� a rigorous proof of the correctness of the approach.

Third, the authors propose a formal framework for computing the correct changeset for an
object preserving view. In the proposed framework, the content of an RDB2RD view is
stored in an RDF data set that contains a set of named graphs, used to describe the context
in which the triples were produced. The main reason for separating triples into distinct
named graphs is that duplicated triples, produced by tuples in different relations, will be in
different named graph. A changeset is computed based solely on the source update and the
source state before and after the update and, hence, no access to the materialized view is
required. This is important when the view is externally maintained (Volz et al., 2005),
because accessing a remote data source may be too slow. Indeed, the experiments indicate
that the time taken to compute the changesets with the proposed framework was almost
three orders of magnitude smaller than partial rematerialization and three orders of
magnitude smaller than full rematerialization.

The remainder of this article is organized as follows. Section 2 discusses related work.
Section 3 presents the formalism used for specification of object-preserving RDB2RDF
views. Section 4 introduces the case study that is used throughout the article. Section 5
formalizes the materialization of the data graph for an RDB2RDF view. Section 6 presents a
formal framework for computing the correct changeset for an RDB2RDF view. Section 7
describes LinkedBrainz Live, a tool that implements the proposed strategy to propagate
updates over the MusicBrainz database to LinkedMusicBrainz view. Section 8 presents the
conclusions.

2. Related work
This section separates related work into three groups. First, it reviews proposals that
address the incremental view maintenance problem. Then, it overviews current techniques
developed to manage knowledge graph evolution. Finally, it is covers VKG approaches.

2.1 Incremental maintenance problem
The incremental view maintenance problem has been extensively studied in the literature
for relational views (Ceri and Widom, 1991; Griffin and Libkin, 1995), object-oriented views
(Ali et al., 2000, 2003), semistructured views (Liefke and Davidson, 2000; Zhao et al., 2017)
and XML views (Vidal et al., 2008; Jin and Liao, 2010; Fegaras, 2011).

IJWIS
18,5/6

258

Most of the work in relational view maintenance proposes an algorithm that computes
the changes for the materialized view when the base relations are updated. The work in Ceri
and Widom(1991) is closest related to this. It shows that the use of triggers is effective for
incremental maintenance because most of the work is done at view definition time. However,
the method the authors propose does not support efficient maintenance of views with
duplicates.

Griffin and Libkin(1995) study the problem of efficient maintenance of materialized
views with duplicates. However, the proposed algorithms are not suitable for externally
materialized views, because they require querying the content of the materialized view to
precisely compute the changesets. For example, the viewW is defined using a query Q that
is defined through a bag algebra expression. Their proposal is to update W according to
changes that the transactions performed on the source data (called by those authors of base
tables) of W. To do this, they identified change propagation rules to derive the incremental
expressions that calculate the set of tuples to be added/deleted to/from W from a given
expression Q and from insertions and deletions that a single transaction wants to perform.
These rules are only suitable for the centralized database, because it requires that the source
data and the views are in the same database. In addition, bag algebra expressions could not
be used in the context of this article, which adopts the standard set semantics.

Konstantinou et al. (2015) investigate the problem of incremental generation and storage
of an RDF graph that is the result of exporting relational database contents. Their strategy,
which is called here as partial rematerialization, requires annotating each triple with the
mapping definition that generated it. In this case, when one of the source tuples changes (i.e.
a table appears to be modified), the triples map definition will be executed for all tuples
generated using the affected table and, thus, all triples generated using the affected tables
are rematerialized. By contrast, in the approach proposed in this article, it is possible to
identify which tuples in the affected tables are possibly affected by the update and only
those tuples are rematerialized.

To summarize, the approach proposed in this article differs from previouswork on incremental
viewmaintenance in that it explores the object-preserving property of typical RDB2RDF views, so
that the solution can deal with views with duplicates. Furthermore, the proposed approach
requires no access to view data, contrasting with the algorithms for the incremental maintenance
of relational views with duplicates published in the literature, which require querying the
materialized viewdata to compute the changesets.

2.2 Knowledge graph evolution
Various approaches have been proposed to deal with the dynamic evolution of a knowledge
graph (KG) in different subjects, such as:

� detect changes during their evolution (Tasnim et al., 2019; Arispe Riveros et al.,
2020);

� represent change information (using vocabularies) (Singh, 2019);
� propagate changes to replicas or federated systems (Endris et al., 2015; Faisal et al.,

2016); and
� detect change between linked open data (LOD) data sets (Papavasileiou et al., 2013;

Roussakis et al., 2015; Zeginis et al., 2011).

Approaches such as described in Tasnim et al., 2019 andArispe Riveros et al. (2020) focus on
dealing with the problem of multiple versions of the same knowledge graph, keeping a
summary out of different versions of the knowledge graph. Singh (2019) defines a set of

RDB2RDF
views

259

terms for describing changes to resource descriptions. These proposals do not address the
incremental maintenance data; thus, their focus is different from the approach proposed in
this article.

Endris et al. (2015) introduce an approach for interest-based RDF update propagation
that consistently maintain a full or partial replication of large LOD data sets. Faisal et al.
(2016) present an approach for dealing with coevolution, which refers to the mutual
propagation of the changes between a replica and its origin data set. Both approaches rely
on the assumption that either the source data set provides a tool to compute a changeset in
real-time or a third-party tool can be used for this purpose. Therefore, the contribution of
this article is complementary and relevant to satisfy their assumption.

The works described in Papavasileiou et al. (2013); Roussakis et al.(2015); and Zeginis
et al.(2011) address the problem of change detection between versions of LOD data sets. In
Zeginis et al. (2011), a low-level change detection approach is used to report simple insertion/
deletion operations. In Papavasileiou et al.(2013) and Roussakis et al. (2015), a high-level
change detection approach is used to provide deltas that are more readable to humans.
Despite their contributions to understanding and analyzing the dynamics of Web data sets,
these techniques cannot be applied to compute changesets for RDB2RDF views.

2.3 Virtual knowledge graph approaches
Ontop (Xiao et al., 2020) is a canonical example of the VKG approach. Ontop does not
materialize an RDF view of the relational database but maintains a virtual RDF view.
During runtime, Ontop translates queries over the knowledge graph to SQL queries over the
database. A survey of virtual graph systems can be found in Xiao et al. (2019). As such,
Ontop cannot be directly compared with the approach proposed in this article, which has a
different motivation:

GraphDB (Ontotext, 2022) offers tools to migrate and materialize RDF data from relational
databases, as well as to define virtual RDF views. GraphDB integrates with Ontop and extends it
with multiple GraphDB specific features.

Contrasting with the VKG strategies, the approach proposed in this article was designed to
cope with contexts where the RDF views must be externally materialized (hence the title of
the article). Indeed, the Linked Open Data cloud has large RDF data sets that have been
completely or partially replicated and integrated externally in other knowledge graphs. This
calls for view maintenance strategies. This article argues, and the experiments reported
confirm, that the proposed approach performs better than rematerialization and that it meets
the requirement of “live synchronization,” as already pointed out in the introduction.

3. Object preserving RDB2RDF views
3.1 Basic concepts and notation
As usual, a relation scheme is denoted as R[A1, . . .,An]. The relational constraints considered
in this article consist of mandatory (or not null) attributes, keys, primary keys and foreign
keys. In particular, F(R:L, S:K) denotes a foreign key, named F, that relate R and S, where L
andK are lists of attributes from R and S, respectively, with the same length.

A relational schema is a pair S = (R,X), where R is a set of relation schemes andX is a set
of relational constraints such that: X has a unique primary key for each relation scheme in
R; X has a mandatory attribute constraint for each attribute which is part of a key or
primary key; and if X has a foreign key of the form F(R:L, S:K), then X also has a constraint
indicating that K is the primary key of S. The vocabulary of S is the set of relation names,
attribute names and foreign key names used in S. Given a relation scheme R[A1, . . .,An] and

IJWIS
18,5/6

260

a tuple variable t over R, t.Ak denotes the projection of t over Ak. Selections over relation
schemes are defined as usual.

Let S = (R,X) be a relational schema and R and T be relation schemes of S. A list f =
[F1,. . .Fn�1] of foreign key names of S is a path from R to T iff there is a list R1, . . ., Rn of
relation schemes of S such that R1 = R, Rn = T and Fi relates Ri and Riþ1. In this case, the
tuples of R reference tuples of T through f . A state s of a relational schema S assigns to
each relation schemeR of S a relation R(s), in the usual way.

An ontology vocabulary, or simply a vocabulary, is a set of class names, object property
names and datatype property names. An ontology is a pair O = (V, R) such that V is a
vocabulary and R is a finite set of formulae in V, the constraints of O. The constraints
include the definition of the domain and range of a property, as well as cardinality
constraints, defined in the usual way.

3.2 Specification of object preserving RDB2RDF view
This section presents the formalism used for the specification of object-preserving
RDB2RDF views. By restricting to this class of views, it is possible to precisely identify the
specific tuples that are relevant to a data source update w.r.t. an RDB2RDF view.

Let O = (V, R) be a target ontology, that is, the organization’s ontology, and let S = (R,X)
be a relational schema, with vocabularyU. Let X be a set of scalar variables andT be a set of
tuple variables, disjoint from each-other and fromV andU.

The formal definition of an RDB2RDF view is similar to that given in Sequeda et al.
(2014) and Poggi et al. (2008). An RDB2RDF view is a tripleW ¼ V ;S;Mð), where:

� V is the vocabulary of the target ontology;
� S is the source relational schema; and
� M is a set of mappings between V and S, defined by transformation rules (TRs).

Intuitively, a view satisfies the object-preserving property iff it preserves the base entities
(objects) of the source database, rather than creating new entities from the existing ones
(Motschnig-Pitrik, 2000). More precisely, a viewW ¼ V ;S;Mð) satisfies the object-preserving
property iff:

� the instances of the classes in V correspond to tuples in selected relations of S,
which are called the pivot relations of X;

� the values of datatype properties in V of these instances are given by (functions of)
attributes in the corresponding tuples, or in related tuples; and

� the object properties in V correspond to relationships between tuples in the pivot
relations of the source database.

ATR ofX is an expression of the formC(x)/Q(x) or of the form P(x, y)/Q(x, y), where C and
P are class and property names in V and Q(x) and Q(x, y) are queries over S whose target
clauses contain one and two variables, respectively.

The formalism based on DATALOG (Abiteboul et al., 1995) for the specification of the
queries Q(x) and Q(x, y) was adopted, which appear on the right-hand side of the TRs. This
formalism is much simpler than general query languages, such as SQL, and RDB2RDF
mapping languages, such as R2RML (Hert et al., 2011), but it is expressive enough to specify
object preserving views, the class of views that is the focus on in this article.

Queries Q(x) and Q(x, y) are expressed as a list of literals. A literal can be: a range
expression of the form R(r), where R is a relation name inU and r is a tuple variable inT, and
a built-in predicate or function, such as those in Table 1. The inclusion of built-in predicates

RDB2RDF
views

261

and functions allows the formalism to capture specific notions of concrete domains, such as
“string concatenation” and “less than,” required for the specification of complex mappings
and restrictions.

In this article, three specific types of TRs were adopted, which are defined in Table 2:
Class TR (CTR), datatype property TR (DTR) and object property TR (OTR).

Intuitively, a CTR c maps tuples of R into instances of class C in V. The predicate B[r, x]
establishes a semantic equivalence relation between a tuple r in R, called the pivot tuple, and
an instance x of C (i.e. intuitively, r and x represent the same real-world entity).

Table 1.
Examples of built-in
predicates

Built-in predicate Intuitive definition

nonNull(v) nonNull(v) holds iff value v is not null

RDFLiteral(u, A, R, v) Given a value u, an attribute A of R, a relation name R and a literal v,
RDFLiteral(u, A, R, v) holds iff v is the literal representation of u, given the
type of A in R

F(r, s) Given a tuple r of R and a tuple s of S, F(r, s) holds iff r
where F is a foreign key of the is related to s by a foreign key F
form F(R:L, S:K)

hasURI(P, A, s) Given a tuple r of R, hasURI(P, A, s) holds iff s is the
where P is the namespace URI obtained by concatenating the namespace prefix P
prefix and A is a list of and the attribute values a1,. . .,anwhere A is the list
attributes of R (in Prolog notation) [a1,. . .,an]. To further simply mat-

ters, we admit denoting a list with a single element, “[a],”
simply as “a”

Table 2.
Transformation rules

TR Transformation rules

CTR c : C(x)/R(r), B[r, x], where
– c is the name of the CTR
– C is a class in V and x is a scalar variable whose value is a URI
– R is relation in S and r is tuple variable; R is called the pivot
relation and r the pivot tuple variable of the rule
– B[r, x] is a list of literals

DTR c : P(x, y)/R(r), B[r, x], H[r, y], where
– c is the name of the DTR
– P is a datatype property in V with domain D
– “Rn(r), B[r, x]” is the right-hand side for the CTR that matches class
Dwith pivot relation R
– H[r, y] is a list of literals which define a predicate H that relates a
tuple r and data values in y

OTR c : P(x, y)/ RD(r1), BD[r1, x], H[r1, r2], RG(r2), BG[r2, y], where
– c is the name of the OTR
– P is an object property in V with domain D and range G
– “RD(r1), BD[r1, x]” is the RHS of the CTR c D that matches class D
with pivot relation RD

– “RG(r2), BG[r2, y]” is the RHS of the CTR c G that matches class G
with pivot relation RG
– H[r1, r2] is a list of literals which define a predicate H that relates
tuples in RDwith tuples in RG

IJWIS
18,5/6

262

Because the present proposal is only interested in object preserving views, the predicate B[r, x]
should define a partial one-to-one function: each pivot tuple r in R should correspond to at most
one instance x of C and different pivot tuples r1, r2 should correspond to different instances x1, x2
ofC. Then, r and x are said to be semantically equivalent, denoted r: x, w.r.t the CTR c .

Intuitively, a DTR c defines the values of the datatype property P for the instances of
class C. These values may correspond to attributes of the pivot tuple r, or attributes of tuples
related to r, as specified by H (see Table 2). Here, there is no restriction on the predicate H,
which may associate several values y to the same tuple r.

To interpret an OTR c , remember that the right-hand side of the CTRs c D and c G
define instances of classes D and G, respectively. So, the OTR c maps relations between
tuples of RD and RG to instances of the object property P, as specified by H. Again, there is
no restriction on the predicateH.

The approach proposed in this article efficiently computes changesets by exploring the
object-preserving property, which allows the precise identification of the tuples in the pivot
relations whose corresponding instances may have been affected by an update. The
advantages of this approach are:

� it simplifies the specification of the view, as the formalism is specifically designed to
describe the correspondences that define an object-preserving view;

� the restrictions on the structure of the queries help ensure the consistency of the
specification of the view;

� the formal expressions that define the queries can be explored to automatically
construct the procedures that compute the changesets that maintain the RDB2RDF
view; and

� it facilitates the task of providing rigorous proofs for the correctness of the proposed
approach.

The problem of generating TRs is addressed in Vidal et al. (2013, 2014) and is outside of the
scope of this work. However, Table 3 summarizes a set of TR patterns that lead to the
definition of relational to RDF mappings that guarantee that the RDF views satisfies the object
preserving property by construction. Table 1 shows the definitions of the concrete predicates
used by the TR patterns in Table 3. The TR patterns support most types of data restructuring
that are commonly found when transforming relational data to RDF, and they suffice to
capture all R2RML mapping patterns proposed in the literature (Sequeda et al., 2012; Das et al.,
2012). In Vidal et al. (2014), the authors proposed an approach to automatically generate
R2RML mappings, based on a set of TRs patterns. The approach uses relational views as a
middle layer, which facilitates the R2RML generation process and improves the maintainability
and consistency of themapping.

4. Case study: MusicBrainz_RDF
MusicBrainz (Mus, Last accessed in Feb/2022) is an open music encyclopedia that collects
music metadata. The MusicBrainz relational database is built on the PostgreSQL relational
database engine and contains all MusicBrainz music metadata. These data include information
about artists, release groups, releases, recordings, works and labels, as well as the many
relationships between them. Figure 2(a) depicts a fragment of the MusicBrainz relational
database schema [for more information about the original scheme, see MBz, Last accessed in
Feb/2022)]. Each relation has a distinct primary key, whose name ends with “id,” except for gid,
which is a universally unique identifier for use in permanent links and external applications.
The relations Artist, Medium, Release, Recording and Track in Figure 2(a) represent the main

RDB2RDF
views

263

Figure 2.
(a) Fragment of
MusicBrainz schema.
(b) Fragment of
MusicBrainz_RDF
view ontology

Artist
- aid
- gid
-
g
name
- type

Credit
- cid
- name

ArtistCredit
- cid
- posspp
-
p
aid

tistCredit

ss

fk1 Release
- rrridd
- gid
-
g
name
- cid

Medium
- mid
- rid
- track_count

Track
- tid
- mid
- name
- cid

- m
- rid
- tra

Track

eename
ddcid

fk4

fk3fk2

fk5

Recording
- ssidd
- gid
-
g
name
- cid
- length

ReleaseGroup
- piddp
-
p
gid
-
g
name
- cid

fk2fk2 fk

eename
- dcid

Releas

fk6

fk7

fk8

RecordingTag
- ssidd
- qid

Tag
- qidd
- name

gag

-

fk9

- qqqiq
na
-

fk10

(a)

mo:record

mo:MusicArtist
+ foaf:name

mo:Release
+ dc:title

mo:Track
+ dc:title

mo:Record
+mo:track_count

st
mo:T

foaf:made

krackr

mo:track

mo:MusicGroup mo:SoloMusicArtist

mo:SignalGroup
+ dc:title

foaf:made

mo:Signal
+ dc:title
+ mo:duration

pp

foaf:made
fo

+

e foaf:made

dbo:Genre
+ dc:titlee

+

bo: eGenre

dbo:genre

(b)

Table 3.
Transformation rule
patterns

TR Transformation rule pattern

CTR c :C(s)/R(r), hasURI(P, A, s), d (r), where
– R is a relation name in S and r a is tuple variable associated with R
– A is a list of attributes of a primary key of R
– d is an optional selection over R and
– P is a namespace prefix

OTR c :P(s, o)/RD(r), BD [r, s],F1(r, r1), . . ., Fn(r
n�1, rn), RG(rn), BG[rn, o]

where:
– P is an object property of V
– R is a relation name in S and r is a tuple variable associated with R
– [F1, . . ., Fn] is a path from R to relation Rn where F1 relates R and R1, and Fi relates R

i�1 and
Ri, and ri is a tuple variable associated with Ri, 1< i# n

DTR c :P(s, v)/R(r), B[r, s], F1(r, r1), . . ., Fn(r
n�1, rn), nonNull(rn.A1), . . . nonNull(rn.Ak), RDFLiteral

(rn.A1, “A1”, “Rn”, v1), . . . RDFLiteral(rn.Ak, “Ak”, “Rn”, vk), T([v1, . . ., vk], v), where
– P is a datatype property of V
– R is a relation name in S and r a is tuple variable associated with R
– [F1, . . ., Fn] is a path from R to relation Rn where F1 relates R and R1, and Fi relates Ri�1 and
Ri, and ri is a tuple variable associated with Ri, 1< i# n
– A1, . . ., Ak are the attributes of Rn. If there is no path, then A1, . . ., Ak are attributes of R
– T is an optional function that transforms values of attributes A1, . . ., Ak to values of
property P

IJWIS
18,5/6

264

concepts. The relation ArtistCredit represents an N:M relationship between Artist and
Credit. The labels of the arcs, such as fk1, are the names of the foreign keys.

The case study uses an RDB2RDF view, calledMusicBrainz_RDF, which is defined over the
relational schema in Figure 2(a). Figure 2(b) depicts a fragment of the ontology used for
publishing the MusicBrainz_RDF view. It reuses terms from three well-known vocabularies,
FOAF (Friend of a Friend),MO (Music Ontology) andDC (Dublin Core).

Table 4 shows a set of TRs that partially specify the mapping between the relational
schema in Figure 2(a) and the ontology in Figure 2(b), obtained with the help of the tool
described in Vidal et al. (2014).

For the examples in the following sections, consider the database state shown in Figure 3. The
transformations rules c 1 and c 2, in Table 4, are examples of the CTR pattern. The predicate
hasURI is defined in Table 1. The CTR c 1 indicates that, for each tuple r inArtist, one should:

� compute the URI s such that hasURI(mbz:, r.gid, s) = true; and
� produce triple (s rdf:type mo:MusicArtist). Therefore, r and s are semantically

equivalent.

The CTR c 2 indicates that, for each tuple r inArtist, where r.type = 1, one should:
� compute the URI s such that hasURI(mbz:,r.gid, s) = true; and
� produce triple (s rdf:type mo:SoloMusicArtist). Therefore, r and s are semantically

equivalent.

Note that attribute gid is a key for relation Artist. Therefore, different tuples in Artist
generate different URIs, that is, different instances. Also, note that c 1 and c 2 use the same
predicate hasURI. Therefore, if a tuple r is mapped to triples (x rdf:type mo:MusicArtist) and
(y rdf:type mo:SoloMusicArtist), then x= y.
Considering the database state in Figure 3, CTRs c 1 and c 2 produce the following triples:

� (mbz:r.ga1 rdf:type mo:MusicArtist);
� (mbz:r.ga1 rdf:type mo:SoloMusicArtist);

Table 4.
Examples of

transformation rules

TR Transformation rules

W1 mo:MusicArtist(s)/Artist(r), hasURI(mbz:, r.gid, s)
W2 mo:SoloMusicArtist(s)/Artist(r), hasURI(mbz:, r.gid, s), (r.type = 1)
W3 mo:MusicGroup(s)/Artist(r), hasURI(mbz:, r.gid, s), (r.type = 2)
W4 mo:Record(s)/Medium(r), hasURI(mbz:, r.mid, s)
W5 mo:Track(s)/Track(r), hasURI(mbz:, r.tid, s)
W7 foaf:made(s, g)/Artist(r), hasURI(mbz:, r. gid, s), fk1(r, r1), fk2(r1, r2) fk3(r2, r3), Track(r3),

hasURI(mbz:, r3.tid, g)
W8 mo:track (s, g)/Medium(r), hasURI(mbz:, r.mid, s), fk4(r, f), Track(f) hasURI(mbz:, f.tid, g),

hasURI(mbz:, f.tid, g)
W10 foaf:name(s, v)/Artist(r), hasURI(mbz:, r.gid, s), nonNull(r.name) RDFLiteral(r.name,

“name”, “Artist”, v)
W11 mo:track_count(s, v)/Medium(r),hasURI(mbz:, r.mid, s),nonNull(r.track_count) RDFLiteral

(r.track_count, “track_count”, “Medium”, v)
W16 dbo:Genre(s)/Tag(r), hasURI(mbz:, r.gid, s)
W20 dc:title(s, v)/Tag(r), hasURI(mbz:, r.gid, s), nonNull(r.name) RDFLiteral(r.name, “title”,

“Tag”, v)
W24 dbo:genre(s, g)/Artist(r), hasURI(mbz:, r. gid, s), fk1(r, r1), fk2(r1, r2) fk7(r2, r3), fk9(r3, r4),

fk10(r4, r5),Tag(r5) hasURI(mbz:, r5.qid, g)

RDB2RDF
views

265

� (mbz:r.ga2 rdf:type mo:MusicArtist);
� (mbz:r.ga3 rdf:type mo:MusicArtist); and
� (mbz:r.ga3 rdf:type mo:SoloMusicArtist).

The TR c 10, in Table 4, is an example of the DTR Pattern. The predicates nonNull(v)
and RDFLiteral(u, A, R, v) are defined in Table 1. Rule c 10 matches the value of
attribute name of relation Artist with the value of datatype property foaf:name, whose
domain ismo:MusicArtist. It indicates that, for each tuple r of R, one should:

� compute the URI s for the instance of mo:MusicArtist that r represents, using the
CTR c 1. Therefore, s and r are semantically equivalent; and

� for each value v, where v is the literal representation of r.name and r.name is not
NULL, produce triple (s foaf:name v).

Considering the database state in Figure 3, c 10 produces the following triples:
� (mbz:ga1 foaf:name “Kungs”);
� (mbz:ga2 foaf:name “Cookin’s on 3 B.”); and
� (mbz:ga3 foaf:name “Kylie Auldist”).

The transformations rules c 7 and c 8, in Table 4, are examples of the OTR pattern.
The predicate F(r, s), where F is a foreign key of the form F(R:L, S:K), is defined in
Table 1. For example, rule c 7 matches a relationship between a tuple r of Artist and
a tuple r3 in Track to instances of the object property foaf:made, whose domain is
mo:MusicArtist and range is mo:Track. It indicates that, for each tuple r of R, one
should:

� compute the URI s for the instance of mo:MusicArtist that r represents, using the
CTR c 1. Therefore, s and r are semantically equivalent;

� for each tuple r3 of Track such that r is related to r3 through path [fk1, fk2, fk3],
compute the URI g for the instance of mo:Track that r3 represents (using CTR c 5).
Therefore, r3 and g are semantically equivalent; and

� produce triple (s foaf:made g).

Figure 3.
State example for
relations in Figure 2(a)

mid
m1

track_count
12

c3 1 a1

cid pos

c1 1

c1 2
c3 Kungs

cid name
c1 Kungs vs. Cookin' on 3 B.

t2 m1 Don't You Know c3

tid name
t1 This Girl

c2 1

c2 Cookin' on 3 B. feat. Kylie Auldist

Track

Credit

Medium

Artist ArtistCredit

c2 2

aid

a1

a2
a2
a3

cid
c2

mid
m1

rid
r1

cid
c3

rid name
r1 Layers

Release
gid
gr1

aid name
a1 Kungs

a2 Cookin' on 3 B.

type
1

2

gid
ga1

ga2
a3 ga3 Kylie Auldist 1

Recording

ReleaseGroup
cid
c3

pid name
p1 Layers

gid
gp1

qid name
q1 pop

q2 dance

Tag

s1 q2
s2 q2

sid
s1

RecordingTag
qid
q1length

3:15

3:04s2 gs2 Don't You
Know c3

sid name
s1

D 't Y
This Girl

cid
c1

gid
gs1

IJWIS
18,5/6

266

Considering the database state in Figure 3, c 7 produces the following triples:
� (mbz:ga1 foaf:made mbz:t2);
� (mbz:ga2 foaf:made mbz:t1); and
� (mbz:ga3 foaf:made mbz:t1).

5. Materialization of the data graph for an RDB2RDF view
The materialization of the data graph for an RDB2RDF view requires translating source
data into the RDB2RDF view vocabulary as specified by the mappings. An important
technical issue that arises in this process is the possibility of duplicated triples, that is, triples
which are generated more than once because of different assignments to the variables in the
body of one or more TRs. Indeed, the main difficulty for the incremental maintenance of
views with duplicates is for delete and update operations. Recall that, by definition, the same
triple cannot be present twice in an RDF triple store. Thus, if a tuple is removed, it is not
possible to determine whether the corresponding triples should be deleted from the view,
because triples may still be produced by another tuple in the database.

For a proper handling of the issue of duplicates, it becomes necessary to distinguish
between two types of duplication:

(1) duplicated triples generated from different pivot relations (see Table 2 for
definition of pivot relation); and

(2) duplicated triples generated from the same pivot relation.

For the case of duplicated triples generated from different pivot relations, a solution
based on named graphs is adopted. In the proposed framework, the content of an
RDF2RDB view is stored in an RDF data set that contains a collection of named graphs.
As in Carroll et al. (2005), a named graph is defined as a pair comprising a URI and an
RDF graph. A named graph can be considered as a set of quadruples (or “quads”) having
the subject, predicate and object of the triples as the first three components and the graph
URI as the fourth element. Each quadruple is interpreted similarly to a triple in RDF,
except that the predicate denotes a ternary relation, instead of a binary relation. This way
of representing quadruples, called quad-statements, was incorporated in the specification
of N-Quad (nQu, 2014).

The main reason for separating triples into distinct (named) graphs is that duplicated
triples, produced by tuples in different relations, will be in different named graphs (context).
This is an important property for supporting duplicated triples generated by different tuples
(Theorem 1 in Section 6.4).

For the case of duplicated triples generated from the same pivot relation, the proposed
solution requires detecting the pivot tuples that are possibly affected by an update, and then
to rematerializing all triples produced by the affected tuples. In particular, the proposal may
be characterized as that of “tracking the relevant tuples in the pivot relations for a given
update” rather than “tracking the updated triples in the view for a given update.”

The following definitions formalize the materialization of the viewW ¼ V ;S;Mð) as the
result of applying the TRs inM against a state s of database S.

For the examples in this section, consider the RDB2RDF viewMusicBrainz_RDF defined
in Section 4 and the database state shown in Figure 3. Also, consider that mbz:ga, mbz:gm,
mbz:gr and mbz:gt are the named graph URIs for the pivot relations Artist, Medium,
Recording andTrack, respectively.

RDB2RDF
views

267

In the rest of the article, R (s) denotes the relation associated with the relation scheme R
in the database state s .

Definition 1 LetW be a TR in M and r1,. . .,rn be tuple variables appearing in c associated
with relations R1,. . ., Rn, where n� 2 and ri= rj for i= j. Also, let s be a database state and
let p1,. . .,pn be tuples in R1(s), . . ., Rn(s).

� W[r1/p1,. . .,rn/pn] denotes the TR obtained from c by substituting the tuples p1, . . .,
pn for the tuple variables r1,. . ., rn, respectively.

� W[r1/p1, . . ., rn/pn](s) denotes the set of triples which are produced when
c [r1/p1, . . ., rn/pn] is applied to s .

Definition 2 (RDF state of a tuple) Let s be a database state and let R be a pivot relation in M.
The RDF state of tuple p in R(s), denotedM[p](s), is defined as:

M[p](s) = {(s, q, o, g) j (s, q, o) is a triple in c [r/p](s) where c is a TR in M with pivot
relation R and g is the named graph URI for pivot relation R}.

Note that, if p is a tuple in R(s) such that R is not a pivot relation in any TR in M, then
M[p](s) =1.

Example 1 Consider the TRs for the MusicBrainz_RDF view defined in Table 4. Also,
consider the relation Artist in Figure 2(a), which is the pivot relation of the TRs
W1,W2,W3,W7,W10 andW24. Thus, the RDF state of a tuple p in relationArtist is computed by
applying the TRs W1[r/p], W1[r/p], W2[r/p], W3[r/p], W7[r/p], W10[r/p] and W24[r/p].
Considering the database state in Figure 3, the RDF state of tuple a1 in Artist contains the
following quads:

� (mbz:ga1 rdf:type mo:MusicArtistmbz:ga), byW1[r/a1];
� (mbz:ga1 rdf:type mo:SoloMusicArtistmbz:ga), byW2[r/a1];
� (mbz:ga1 foaf:madembz:t2 mbz:ga), byW7[r/a1];
� (mbz:ga1 foaf:name “Kungs”mbz:ga), byW10[r/a1];
� (mbz:ga1 dbo:genrembz:q1 mbz:ga);
� (mbz:ga1 dbo:genrembz:q2 mbz:ga); and
� (mbz:ga1 dbo:genrembz:q2 mbz:ga), byW24[r/a1].

Note that,W3[r/a1] produces no triple, whereasW24[r/a1] produces duplicated triples. The triple
(mbz:ga1 dbo:genre mbz:gq2) is generated twice by assigning different tuple variables inW24.

Definition 3 (RDF state of a relation) Let s be a database state of S and R be a relation in
S. The RDF state of R at state s , denotedM[R](s), is defined as:

M R½ � sð Þ ¼ [
p is a tuple in R sð Þ

M p½ � sð Þ

Intuitively, the RDF state of R at state s is computed by the materialization of the RDF state
of all tuples in R. Note that, if R is not a pivot relation in any TR inM, thenM[R](s) =1.

Definition 4 (Materialization ofW) The materialization or state ofW at state s , denoted
M(s), is defined as:

M sð Þ ¼ [
p is a tuple in R sð Þ and

R is a PivotRelation of W

M p½ � sð Þ

IJWIS
18,5/6

268

Intuitively, the RDF state ofW at state s is computed by the materialization of RDF states
of all pivot relation ofW .

6. Formal framework for computing correct changesets for RDB2RDF views
This section presents the proposed framework for computing a correct changeset for the
materialized RDB2RDF view W ¼ V ;S;Mð), when an update u occurs in the source
relational database S.

6.1 Overview
An update u on a relation R is defined as two sets, D and I, of tuples of R. The update u
indicates that the tuples in D must be deleted and the tuples in I must be inserted into R.
More precisely:

Definition 5 (updates, insertions and deletions) An update on a relation R is a pair u=(D,
I) such that D and I are, possibly empty, sets of tuples of R. If I =1, the authors say that the
update is a deletion, and, if D =1, they say that the update is an insertion.

The semantics of an update u= (D, I) is straightforward and is defined as follows:
Definition 6 (semantics of an update) Let u = (D, I) be an update on R and s 0 be a

database state. Then, the execution of u on s 0 results in the database state s 1 which is equal
to s 0 except that R(s 1) = R(s 0) � D | I. The authors also say that s 1 is the result of
executing u on s 0 and that s 0 is the database state before u and s 1 is the database state
after u.

Note that updates are deterministic, in the sense that, given an initial state, an update
always results in the same state.

The diagram in Figure 4 describes the problem of computing a correct changeset for a
materialized RDB2RDF viewW, when an update u occurs in the source relational database
S. In the diagram of Figure 4, assume that:

� M is the set of mappings that materialize viewW ;
� s 0 and s 1 are the states of S, respectively, before and after the update u; and
� M(s 0) andM(s 1) are the materializations ofW , respectively, at s 0 and s 1.

A correct changeset forW w.r.t. u, s 0 ands 1 is a pair hD� (u),Dþ (u)i, whereD�(u) is a set of
triples removed fromW and Dþ(u) is a set of triples added toW , that satisfies the following
restriction (see Figure 4):

M s 1ð Þ ¼ M s 0ð Þ � D� uð Þ� � [Dþ uð Þ (1)

Putting this in words, the changeset hD� (u), Dþ (u)i is correctly computed iff the new view
state

Figure 4.
Problem of

computing correct
changeset for

RDB2RDF view

RDB2RDF
views

269

(M (s 0) � hD� (u)) | Dþ (u), computed with the help of the changeset, and the new view
state M (s 1), obtained by the rematerialization of the view, using the view mappings, are
identical.

The computation of the changesets depends on the update u, the initial and final
database states, s 0 and s 1 and the view mappingsM. However, the notation for changesets
indicates only the update u, to avoid a cumbersome notation, because the database states
may be considered as the context for u and the view mappings as fixed for the database in
question.

The proposed approach to compute a correct changeset for an update u follows three
main steps:

(1) Identification of relevant relations (RRs). Identify the relations in S that are
relevant to update u. A relation is relevant to u if its RDF state is possibly affected
by u.

(2) Identification of Relevant Tuples. Identify the tuples, in the RRs, that are relevant to
the update. A tuple is relevant to an update u if its RDF state is possibly affected
by the update.

(3) Computation of Changesets. Compute the changeset hD� (u), Dþ (u)i. D� (u)
contains the old RDF states of the relevant tuples, which are removed fromW , and
Dþ (u) contains the new RDF states of the relevant tuples, which are inserted into
W. Therefore, only the RDF state of relevant tuples, identified in Step 2. are
rematerialized.

6.2 Identifying relevant relations
Definition 7 formally specifies, based on the TRs in M, the necessary and sufficient
conditions for a relation to be considered relevant to an update.

Definition 7 Let R be a relation in S.
Let W be a TR in M. R is relevant to W iff R appears in the body of W or R is
referenced by a foreign key in the body ofW.
R is relevant to viewW iff R is relevant to some TR inM.
Let u be an update on relation R. A relation R* in S is relevant to u iff R* is the pivot
relation of a TRW inM and R is relevant toW.

Example 2 Consider the TRs for the MusicBrainz_RDF view defined in Table 4. The
relation Track is relevant to TRs W5, W7 and W8 (Definition 7(i)). The relations Track,
Artist and Medium are the pivot relations of W5, W7 and W8, respectively. Therefore, the
relations Track, Artist and Medium are relevant to updates on the relation Track
(Definition 7(iii)).

In the rest of this section, R* denotes a pivot relation and r* denotes a pivot tuple
variable. Proofs for all lemmas and theorems have been omitted here because of space
limitations. For the interested reader, they can be found at https://doi.org/10.5281/
zenodo.5850244.

Lemma 1 Let u be an update on a relation R and let s0 and s1 be the database states
before and after u, respectively:

If R is not relevant to W, then M(s0) = M(s1). Thus, an update on a relation that is
not relevant to the view does not affect the state of the view.

IJWIS
18,5/6

270

https://doi.org/10.5281/zenodo.5850244
https://doi.org/10.5281/zenodo.5850244

Let R* be a relation in S. If R* is not relevant to u, then M[R*](s0) = M[R*](s1).
Thus, an update u does not affect the RDF state of the relations which are not
relevant to u.

Based on Lemma 1(i), the authors focused their attention only on the relations that are
relevant toX (Definition 7 (ii)). On the other hand, from Lemma 1(ii), an update on a RR may
affect only the RDF states of the relations that are relevant to the update. Consider, for
example, an update on relation Track. This update may affect the RDF state of relations
Track, Artist and Medium, which are relevant to updates on Track (see Example 2). The
RDF states of other RRs are not affected by updates onTrack.

6.3 Identifying relevant tuples
Definitions 8 and 9 formally define sufficient conditions to identify, based on the
database state and the view mappings, which tuples, in a RR, are relevant to an
update. The key idea of the proposed approach is to rematerialize only the RDF state
of the tuples that are relevant to the update, that is, the tuples whose RDF state might
possibly be affected by the update.

Definition 8 Let:
� u=(D, I) be an update on R.
� s0 and s1 be the database states before and after u, respectively.
� C be a TR in M, where R is relevant to C, R* is the pivot relation of C, r and r* are

the tuple variables for R and R* inC, respectively.
� Let rold be a tuple in D.
� P R;W½ � roldð Þ ¼ fpjp is a tuple in R* (s 0) and (W[r*/p, r/t]) (s 0)=1)}.
� Let rnew be a tuple in I.
� P R;W½ � rnewð) = {p/p is a tuple in R*(s 1) and (W [r*/p, r/t] (s 1)=1)}.
� A tuple p in R*(s0)| R*(s1) is relevant to u w.r.t.C iff p is in P R;W½ � tð Þ for some t

in D| I.

In Definition 8, given a tuple t inD [I ; P R;W½ � tð Þ returns all tuples in R*(s 0)| R*(s 1) that
are related to t. Therefore, the RDF state of a tuple p in P R;W½ � tð Þ may be affected by the
update u. This makes p relevant to u.

Definition 9 Let u=(D, I) be an update on R and s0 and s1 be the database states before
and after u, respectively. A tuple p in s0| s1 is relevant to u iff:

P is relevant to u w.r.t a TRW inM; or
P occurs in D| I and R is a pivot relation of a TR inM.

Lemma 2
Let u = (D, I) be an update on R. Let R* be a relation relevant to u and let p be a tuple in

R*(s0), but not in D. If p is not relevant to u w.r.t any TR W in M, then M[p](s 0) = M[p]
(s 1).

Example 3 Consider the TRs for the MusicBrainz_RDF view defined in Table 4 and the
database state in Figure 3. Also, consider u an update which deletes tuple rold and inserts
tuple rnew in tableTrack, where:

� rold = ht1, m1, “This Girl”, c2i
� rnew=ht1, m1, “This Girl (feat. Cookin’ On 3 B.)”, c1i

RDB2RDF
views

271

From TRs W7, W8, you have that the relations Track, Artist and Medium are relevant to
updates on tableTrack (see Example 2).

FromDefinition 8 and TRW7, you have that:�
� P Track;W7½ � rnewð Þ ¼ a1; a2f g
� P Track;W7½ � roldð Þ ¼ a2; a3f g

Therefore, tuples a1 and a2 in relation Artist are related to rnew w.r.t.W7, and tuples a2 and
a3 in relation Artist are related to rold w.r.t. W7. Thus, tuples a1, a2 and a3 are relevant to
update uw.r.t.W7.

FromDefinition 8 and TRW8, you have that:
� P Track;W8½ � rnewð Þ ¼ m1f g
� P Track;W8½ � roldð Þ ¼ m1f g

Therefore, tuplem1 in relationMedium is relevant to update uw.r.tW8. From Definition 9(i),
tuples a1, a2, a3 and m1 are relevant to u. Because table Track is a pivot relation, from
Definition 9(ii), rnew and rold are also relevant to u.

6.4 Computing changesets
In the proposed strategy, database triggers are responsible for computing and publishing
the correct changeset for the RDB2RDF view to stay synchronized with the relational
database. The proposed strategy first identifies the relations in the source database that are
relevant for the RDB2RDF view, that is, the relations whose updates might possibly affect
the state of the RDB2RDF view.

For each update operation u on a RR (see Definition 7) two triggers are defined:
� BEFORE Trigger: Fired immediately before the update to compute the set D�(u),

using the view mapping and the database state BEFORE the update.
� AFTER Trigger: Fired immediately after the update to compute the set Dþ(u), using

the view mapping and the database state AFTER the update.

Figure 5 shows the templates of the triggers for the update operations on a relation R.
Note that procedures COMPUTE_D�[R] and COMPUTE_Dþ[R] can be generated at
view definition time, based on the TRs of the view, as discussed in a companion
article.

In the following, the precise definition of the algorithm’s key concepts is presented,
which allowed the authors to provide rigorous arguments for the correctness of the
algorithm. Based on Lemma 2, only the RDF state of the tuples that are relevant to
the update should be rematerialized. This result motivates the following definition for

Figure 5.
Triggers templates
for updates onR (a) (b)

IJWIS
18,5/6

272

the changesets that maintain the state of the view in the presence of an update u on a
tuple p.

Algorithm 1 shows a high-level description of the algorithm for computing
changeset for updates on a relation R. In the algorithm, Step 3 is processed in two
phases. Phase 1 uses the database state before the update, whereas Phase 2 uses the
database state after the update. The algorithms for insertions and deletions are
similarly defined and are omitted here.

Algorithm 1: Algorithm for computing changeset for updates on a relation R
Input:

u = (D, I) – an update on R;
s0 and s1 – the states of the database respectively before and after
the update u;

Output:
D� andDþ

if R is relevant to the viewW (Definition 7; (ii)) then

Phase 1: Before the update do:
1.1 Compute P0, the set of tuples in s0 that are relevant to u

(Definition 9)
1.2 ComputeD� :¼ [M

p2 P0ð Þ
p½ �;

//D� contains the union of the RDF states of tuples in P0

(Definition 10)

Phase 2: After the update do:
2.1 Compute P1, the set of tuples in s1 that are relevant to u

(Definition 9)
2.2 ComputeDþ :¼ [M

p2 P1ð Þ
p½ �;

//Dþ contains the union of the RDF states of tuples in P1

(Definition 10)
end return (Dþ, D�);

Definition 10 (Changeset for update u) Let u = (D, I) be an update on R. Let P0 be the set of
tuples in s0 that are relevant to u (Definition 9). Let P1 be the set of tuples in s1 that are
relevant to u (Definition 9). Then:

� D� uð Þ ¼ [M
p2P0

p½ � s 0ð Þ
� Dþ uð Þ ¼ [M

p2P1

p½ � s 1ð Þ

As already pointed out in the introduction, changesets depend on the update u, the initial
and final database states, s 0 and s 1, and the view mappings M. However, the notation for
changesets indicate only the update u, to avoid a cumbersome expression, because one can
consider the database states as the context for u, and the view mappings as fixed for the
database and the view in question.

In Definition 10, the set D�(u) contains the old RDF state of the tuples in P0, and the set
Dþ(u) contains the new RDF state of the tuples in P1. In the following, Theorem 1 shows

RDB2RDF
views

273

that the new state of the view is correctly computed using D�(u) and Dþ(u). So, hD�(u),
Dþ(u)i is a correct changeset forW w.r.t. update u.

A third auxiliary lemma is needed to prove the central result of the article, which is
shown as follows.

Lemma 3 Let s be database state and, for i = 1,2, let Ti be sets of tuples in pivot relations
of an RDB2RDF view. Define Qi = {x/x is a quad in M[p](s), where p is a tuple in Ti}. If T1
and T2 are disjoint, then Q1 and Q2 are also disjoint.

Theorem 1 Let:
� u = (D, I) be an update on R.
� s0 and s1 be the database states before and after u.
� P0; P1; D

� uð Þ and Dþ(u) be as in Definition 10.

ThenM s 1ð Þ ¼ M s 0ð Þ � D� uð Þ� � [Dþ uð Þ.
Example 4 To illustrate this strategy, consider the update u as in Example 2, and P0 and

P1 is in Definition 10. Figure 6 shows the new state of database S after the update u. From
Example 3, you have:

P0 ¼ fa1; a2; a3;m1; roldg andP1 ¼ fa1; a2; a3;m1; rnewg (2)

Below details show the set D�(u), which contains the old RDF states of the tuples in P0.
Below details show the setDþ(u), which contains the new RDF states of the tuples inP1.

D�(u) for update u in Example 4:
� {(mbz:t1 rdf:type mo:trackmbz:gt);
� (mbz:t1 dc:title “This Girl”mbz:gt);
� (mbz:ga2 rdf:type mo:MusicArtistmbz:ga);
� (mbz:ga2 foaf:name “Cookin’s on 3 B.”mbz:ga);
� (mbz:ga2 foaf:madembz:t1 mbz:ga);
� (mbz:ga2 dbo:genrembz:q1 mbz:ga);
� (mbz:ga2 dbo:genrembz:q2 mbz:ga);

Figure 6.
Database state after
the update u

mid
m1

track_count
12

c3 1 a1

cid pos

c1 1

c1 2
c3 Kungs

cid name
c1 Kungs vs. Cookin' on 3 B.

c2 1

c2 Cookin' on 3 B. feat. Kylie Auldist

Track

Credit

Medium

Artist ArtistCredit

c2 2

aid

a1

a2
a2
a3

rid
r1

cid
c3

rid name
r1 Layers

Release
gid
gr1

aid name
a1 Kungs

a2 Cookin' on 3 B.

type
1

2

gid
ga1

ga2
a3 ga3 Kylie Auldist 1

Recording

ReleaseGroup
cid
c3

pid name
p1 Layers

gid
gp1

qid name
q1 pop

q2 dance

Tag

s1 q2
s2 q2

sid
s1

RecordingTag
qid
q1length

3:15

3:04s2 gs2 Don't You
Know c3

sid name
s1

D 't Y
This Girl

cid
c1

gid
gs1

t2 m1 Don't You Know c3

tid name

t1 This Girl(feat.
Cookin' On 3 B.)

cid

c1

mid

m1

IJWIS
18,5/6

274

� (mbz:ga2 rdf:type mo:MusicGroupmbz:ga);
� (mbz:ga3 rdf:type mo:MusicArtistmbz:ga);
� (mbz:ga3 foaf:name “Kylie Auldist”mbz:ga);
� (mbz:ga3 foaf:madembz:t1 mbz:ga);
� (mbz:ga3 rdf:type mo:SoloMusicArtistmbz:ga);
� (mbz:m1 rdf:type mo:Recordmbz:gm);
� (mbz:m1mo:track_count 12 mbz:gm);
� (mbz:m1mo:trackmbz:t1 mbz:gm);
� (mbz:m1mo:trackmbz:t2 mbz:gm);
� (mbz:ga1 rdf:type mo:MusicArtistmbz:ga);
� (mbz:ga1 foaf:name “Kungs”mbz:ga);
� (mbz:ga1 foaf:madembz:t2 mbz:ga) ;
� (mbz:ga1 dbo:genrembz:q1 mbz:ga);
� (mbz:ga1 dbo:genrembz:q2 mbz:ga);
� (mbz:ga1 rdf:type mo:SoloMusicArtistmbz:ga) }

Dþ(u) for update u in Example 4:

� (mbz:t1 rdf:type mo:trackmbz:gt);
� (mbz:t1 dc:title “ThisGirl(feat. Cookin’On 3B.)”mbz:gt);
� {(mbz:ga2 rdf:type mo:MusicArtistmbz:ga);
� (mbz:ga2 foaf:name “Cookin’s on 3 B.”mbz:ga);
� (mbz:ga2 foaf:madembz:t1 mbz:ga);
� (mbz:ga2 dbo:genrembz:q1 mbz:ga);
� (mbz:ga2 dbo:genrembz:q2 mbz:ga);
� (mbz:ga2 rdf:type mo:MusicGroupmbz:ga);
� (mbz:ga3 rdf:type mo:MusicArtistmbz:ga);
� (mbz:ga3 foaf:name “Kylie Auldist”mbz:ga);
� (mbz:ga3 rdf:type mo:SoloMusicArtistmbz:ga);
� (mbz:m1 rdf:type mo:Recordmbz:gm);
� (mbz:m1mo:track_count 12 mbz:gm);
� (mbz:m1mo:trackmbz:t1 mbz:gm);
� (mbz:m1mo:trackmbz:t2 mbz:gm);
� (mbz:ga1 rdf:type mo:MusicArtistmbz:ga);
� (mbz:ga1 foaf:name “Kungs”mbz:ga);
� (mbz:ga1 foaf:madembz:t1 mbz:ga);
� (mbz:ga1 foaf:madembz:t2 mbz:ga) ;
� (mbz:ga1 dbo:genrembz:q1 mbz:ga);
� (mbz:ga1 dbo:genrembz:q2 mbz:ga);
� (mbz:ga1 rdf:type mo:SoloMusicArtistmbz:ga) }

RDB2RDF
views

275

7. Implementation and experiments
To test the proposed strategy, the LinkedBrainz Live tool (LBL tool) was implemented.
The LBL tool propagates updates over the MusicBrainz relational database (MBD
database) to an external materialized RDF view, called LinkedMusicBrainz view (LMB
view).

Figure 7 shows the main components of the LBL tool, which are described in what
follows:

� The MBD database is a local replica of the MusicBrainz database. The MBD
database scheme contains 411 relations, and it includes information about artists,
release groups, releases, recordings, works and labels. The decompressed database
dump has about 13 GB and was stored in PostgreSQL version 9.4.

� The MO vocabulary (MO, Last accessed in Feb/2022) is used for publishing the
LMB view. The mapping for translating MBD data into the MO vocabulary is
shown in https://doi.org/10.5281/zenodo.6465759.

� The triggers are responsible for computing and publishing the changesets for
updates on RR of the MBD database. The MBD database scheme has 43 relations
that are relevant to the LMB view. The triggers required for the RRs are presented
in https://doi.org/10.5281/zenodo.6465759.

� The LBL update extractor extracts updates from the replication file provided by
MusicBrainz, which contains a sequential list of the update instructions processed
by the MusicBrainz database. When there is a new replication file, the updates
should be extracted and then executed against the local replica of the MusicBrainz
database.

� The synchronization tool enables the LMB view to stay synchronized with theMBD
database. It simply downloads the changeset files sequentially, creates the
appropriate INSERT/DELETE statement and executes it against the LMB view
triplestore.

The experiments measure the time spent to compute the changeset for 109 replication
files published by MusicBrainz. A total number of 556,872 updates were processed,
332,172 of which were relevant to the LMB view. Table 5 shows a summary of the
processed replication files. On average, a replication file contained 5,066 updates, 3,202
of which were relevant to LMB view, and the average time to compute the changeset
was 3,574 s. The biggest replication file contained 10,455 updates, 7,034 of which were relevant
to LMBview, and the time to compute the changeset was 6,449 s. The smallest replication file had
1,230 updates, 708 of which were relevant to LMB view, and the time to compute the changeset
was 445 s.

Figure 7.
LinkedBrainz Live
tool

IJWIS
18,5/6

276

https://doi.org/10.5281/zenodo.6465759
https://doi.org/10.5281/zenodo.6465759

The experiments were divided into three parts. The first part measures the overhead that
the triggers cause in the performance of the data source updates. The second part compares
the proposed incremental maintenance strategy for RDB2RDF views against the full and
partial rematerialization of RDB2RDF views. Finally, the third part compares the proposed
strategy against the mechanism for incremental maintenance of relational view supported
by the Oracle Database.

7.1 Part I – Overhead caused by computing changesets using triggers
This experiment measures the average time spent by the triggers to compute the changesets
(D� and Dþ) for updates on RRs of the LMB view. Table 6 summarizes the average time
required to compute the changesets for updates on the RRs Artist, Medium, Recording,
Track and Credit, which are among themost updated relations in theMusicBrainz database.

For each RR, Table 6 shows the average number of updates by replication files; the average
number of relevant tuples by update on RR; and the average time (in ms) to compute D� and
Dþ per update on RR. The time was computed separately for steps 1 and 2 of the procedures
COMPUTE_D�[R] and COMPUTE_Dþ[R]. The experiments demonstrated that the runtime
for computing the changeset is negligible because the number of tuples that are relevant to an
update is relatively small. For example, in the worst case in Table 6, the average time to
compute D� and Dþ was less than 1.2 s in the relation Credit. These results indicate that the
proposed strategy can support live synchronization for large RDB2RDF views.

7.2 Part II – Evaluation of relevant tuples rematerialization against full and partial
rematerialization approaches
As part of the evaluation, the proposed incremental strategy was compared with full and
partial rematerializations, for updates on RRs of the LMB view. Figure 8 shows the
comparison for updates on the RRsArtist,Medium, Recording andTrack. Figure 8 shows:

� the average time spent to compute D� and Dþ (see Table 6) considering only the
tuples that are relevant to the update;

Table 6.
Changeset

computation
performance for
updates on some
relevant relations

Relevant Avg. no. of rele- Avg. no. of COMPUTE_D�[R] (ms) COMPUTE_Dþ[R] (ms)

relation
vant updates
by rep. files

tuples by
updates Step 1 Step 2 Step 1 Step 2

Artist 41.49 5.87 439 510 6 62
Medium 324.56 18.52 134 33 4
Recording 644.50 4.99 156 691 5 194
Track 585.28 4.87 145 601 6 211
Credit 785.06 10.49 151 813 4 224

Table 5.
Summary of

replication files (109
replication files)

Replication No. of No. of relevant Time to compute
file (size) updates updates changeset (ms)

Average 5,066 3,022 3,574,000
Biggest 10,455 7,034 6,449,000
Smallest 1,230 708 445,000

RDB2RDF
views

277

� the time spent for materialization of the relations that are relevant to the update
(partial rematerialization). The time is computed by the sum of the time for
materializing each RR. Table 7 shows the size (number of tuples) and the time
(in ms) spent to rematerialize some of the RRs; and

� the time spent to rematerialize the view (full rematerialization). The time is
computed by the sum of the time for materializing all pivot relations.

The average time to rematerialize the LMB view was 206min (12,360,871 ms). Note that, for
updates on relations in Figure 8 (Track, Artist, Recording and Medium), the difference
between full and partial strategies is not very significant. That is because, the updates on
those relations are relevant to other relations and the time spent to materialize them is
almost 73% of the time spent to materialize the LMB view.

As Figure 8 clearly shows, the time to compute the changeset with the proposed approach is
almost three orders of magnitude smaller than partial rematerialization and three orders of
magnitude smaller than full rematerialization strategy. Thus, one may conclude that, in a
situation where the RDB2RDF view should be frequently updated, the incremental strategy far
outperforms full rematerialization and also partial rematerialization. The results also show that
full rematerialization and partial rematerialization are not a solution for live synchronization of
large RDB2RDF views.

7.3 Part III – Evaluation of our strategy against incremental maintenance of relational
views
This experiment compares the proposed incremental maintenance strategy with the
mechanism for incremental maintenance of relational view supported by the Oracle
Database. It was not possible to use the PostgreSQL database because it has no support for
incremental viewmaintenance.

Figure 8.
Comparison of the
three
rematerialization
approaches

Table 7.
Materialization time
for some of the
relevant relations

Relevant relation No. of tuple (k) Materialization time (ms)

Artist 1,962 2,697,630
Medium 3,587 480,252
Recording 26,759 961,251
Track 37,041 4,980,582
Credit 2,278 *not a pivot relation

IJWIS
18,5/6

278

The mechanism for incremental maintenance (incremental refresh) of relational view
implemented by Oracle does not support views with duplicate (Griffin and Libkin, 1995). To
create a materialized view in Oracle and use the incremental refresh mechanism, the select
clause should include the key (rowid) for all base relations. It also requires the creation of
logs table to keep track of updates on the base relation. The changesets are computed using
the states of the materialized view, log tables and base relations.

For the experiments, a set of relational views was defined in such a way that the
mappings from relational view schemas to RDF view ontology were direct mappings (Group,
2012). The proposal was to break the definition of the RDB to RDF mappings in two stages,
as depicted in Figure 9. The SQL mappings, from relation schema to relational view schema,
absorb the complexity of the mappings, so that the mappings from the relational views to
RDB RDF views are direct mappings. Authors in Vidal et al. (2014) present a strategy to
automatically generate the relational view schema and direct R2RML mappings based on a
set of TRs. Figure 10 depicted the schema for some relational view used in our experiments.
The SQL definition for the relational views in Figure 10 are shown in https://doi.org/10.5281/
zenodo.6465759.

Notice that an update on a base relation may affect several relational views. Table 8
shows the list of relational views that are relevant to relations Artist, Medium, Recording
and Track. Updates on these tables should be propagated to their relevant views. Therefore,
the refresh time for an update on a base relation is the sum of the refresh time for all the
relational views that are relevant to that base relation.

The experiments adopt the same updates on Artist, Medium, Recording and Track
relations that were used in the first part of the experiment. The updates are applied to the
Oracle database, and then the total time to refresh all relevant views is computed.

Figure 9.
Three-level schema

R2RML
Mappings

Relational
Schema

Relational View
Schemas

SQL
Mappings

RDB-RDF View
Ontology

RDB2RDF
views

279

https://doi.org/10.5281/zenodo.6465759
https://doi.org/10.5281/zenodo.6465759

Table 9 shows the results for five on each relation. The updates were selected considering
the runtime for computing the changeset obtained in the first part of the experiment.
Updates 1 and 2 are the updates with the smallest runtime, update 3 has an average runtime
and updates 4 and 5 have the highest runtime. Figure 11 shows the comparison of the results
for each relation.

Figure 12 shows the comparison considering the average time for both approaches.
Notice that the average time to compute the changeset is almost two orders of magnitude
smaller than the average refresh time. The experiments also demonstrated that the refresh
time increases when the views are very large. Thus, the incremental refresh mechanism is
not a good solution for live synchronization of large relational views.

Table 8.
List of relevant views
to relevant relations
in Artist, Medium,
Recording and Track

Relevant relation (RR) Relevant views No. of relevant views

MusicArtist, SoloMusicArtist,
MusicGroup, MusicArtisMade,
MusicArtistGender,
MusicArtistBaseNear,
MusicArtistIsPrimaryTopicOf,
MusicArtistAccount,

Artist MusicArtistMemberOf, 14
MusicArtistSameAs,
MusicArtistSeeAlso,
MusicArtistComment,
MusicArtisHasTag,
MusicArtistComposer
Record, RecordTrack,

Medium RecordMediaType, 4
ReleaseRecord
Signal, SignalComment,

Recording MusicArtisMade, 4
TrackPublicationOf
Track, TrackDuration,

Track TrackPublicationOf, 4
MusicArtisMade

Figure 10.
Relational view
schema

MusicArtist
- aid
- gid
- name
- type

MusicArtistMade
- gidgg
-
g
pid

Release
- rrridd
- gid
-
g
name

Record
- mid
- rid
- track_count

Track
- tid
- mid
- name

SoloMusicArtist
- gidd

MusicGroup
- gidd

MusicProduction
- pid

Signal
- sid
- gid
-
g
name
- length

SignalGroup
- sggidd
-
g
gid
-
g
name

RecordTrack
- mid
- tid

IJWIS
18,5/6

280

Another limitation of the Oracle mechanism is that it requires access to the view for
incremental refresh, which can be very slow when the view is maintained externally,
because accessing a remote data source may be too slow. One may conclude that the
proposed strategy is much simpler, more efficient and less restrictive, because the views can
have duplicated tuples and are maintained externally.

8. Conclusions and final remarks
This article presented a formal framework for the construction and incremental
maintenance of RDB2RDF views, which are externally materialized in an EKG. In the

Figure 11.
Changeset

computation�
incremental refresh

Table 9.
Time for changeset
computation and

incremental refresh

Update Artist Medium Recording Track
(C) (R) (C) (R) (C) (R) (C) (R)

1 520 60,4228 130 117,946 341 533,080 150 579,260
2 661 618,189 151 132,401 371 498,770 180 713,914
3 1,211 510,184 151 154,775 430 609,917 201 705,353
4 1,391 725,992 420 136,459 1,401 480,010 640 619,580
5 1,600 517,710 971 101,685 3,320 486,462 2,800 704,016

Note: (C) Changeset, (R) Refresh

RDB2RDF
views

281

proposed framework, the server computes and publishes changesets, which indicate the
difference between two states of the view. The EKG system can then download the
changesets and synchronize the externally materialized view. The changesets
are computed based solely on the update and the source database state and no access to
the content of the view is required.

In the formal framework, changesets are computed in three steps: identification of
RRs, identification of relevant tuples and computation of changesets. The formal
framework was based on three key ideas. First, it assumed that the RDB2RDF views are
object-preserving, that is, the views preserve the base entities of the source database,
rather than creating new entities from the existing ones (Motschnig-Pitrik, 2000). This
assumption makes it possible to precisely identify the specific tuples that are relevant
to a data source update w.r.t. an RDB2RDF view. Second, the formal framework
included a rule language to specify object preserving-views mappings. Third, the
proposed framework assumes that the content of an RDB2RD view is stored in an RDF
data set that contains a set of named graphs, used to describe the context in which the
triples were produced. The central result of the article, Theorem 1, showed that
changesets computed according to the formal framework correctly maintain the
RDB2RDF views. The main idea that differentiates the proposed approach from
previous work on incremental view maintenance is to explore the object-preserving
property of typical RDB2RDF views, so that the solution can also be able to deal with
views with duplicates.

To test the proposed strategy, the LinkedBrainz Live tool (LBL tool) was implemented.
Very briefly, the LBL tool propagates updates over the MusicBrainz database (MBD
database) to the LinkedMusicBrainz view (LMB view). The LMB view is intended to help
MusicBrainz publish its database as Linked Data. Based on the tool, experiments were
conducted in two parts. The first part measured the overhead that the triggers cause in the
performance of the data source updates. The second part compared our incremental
maintenance strategy against the full and partial rematerialization of RDB2RDF views. The
experiments indicated that the proposed strategy supports live synchronization of large
RDB2RDF views and that the time taken to compute the changesets with the proposed
approach was almost three orders of magnitude smaller than partial and full
rematerialization.

Figure 12.
Comparison of
changeset
computation for
RDB2RDF view and
incremental refresh

IJWIS
18,5/6

282

References
Abiteboul, S., Hull, R. and Vianu, V. (Eds) (1995), Foundations of Databases: The Logical Level, 1st ed.,

Addison-Wesley Longman Publishing, Boston, MA.
Abiteboul, S., McHugh, J., Rys, M., Vassalos, V. and Wiener, J.L. (1998), “Incremental maintenance for

materialized views over semistructured data”, Proceedings of the 24th International Conference
on Very Large Data Bases’, VLDB ‘98, Morgan Kaufmann Publishers, San Francisco, CA,
pp. 38-49.

Ali, M.A., Fernandes, A.A.A. and Paton, N.W. (2000), “Incremental maintenance of materialized OQl
views”, Proceedings of the 3rd ACM International Workshop on Data Warehousing and OLAP’,
DOLAP ‘00,ACM,NewYork, NY, pp. 41-48.

Ali, M.A., Fernandes, A.A.A. and Paton, N.W. (2003), “Movie: an incremental maintenance system for
materialized object views”,Data and Knowledge Engineering, Vol. 47 No. 2, pp. 131-166.

Arispe Riveros, M., Tasnim, M., Graux, D., Orlandi, F. and Collarana, D. (2020), “Verbalizing the
evolution of knowledge graphs with formal concept analysis”, Advances in Semantics and
Linked Data: JointWorkshop Proceedings from ISWC 2020.

Calvanese, D., Gal, A., Lanti, D., Montali, M., Mosca, A. and Shraga, R. (2020), “Mapping patterns for
virtual knowledge graphs”, available at: https://arxiv.org/abs/2012.01917

Carroll, J.J., Bizer, C., Hayes, P. and Stickler, P. (2005), “Named graphs, provenance and trust”,
Proceedings of the 14th International Conference on World Wide Web’, WWW ‘05, ACM,
New York, NY, pp. 613-622.

Ceri, S. and Widom, J. (1991), “Deriving production rules for incremental view maintenance”,
Proceedings of the 17th International Conference on Very Large Data Bases, VLDB ‘91,Morgan
Kaufmann Publishers, San Francisco, CA, pp. 577-589.

Das, S. Sundara, S. and Cyganiak, R. (2012), “R2RML: RDB to RDF mapping language’, W3C working
draft. W3Cworking draft”, available at: www.w3.org/TR/r2rml/

DBp (Last accessed in Feb/2022), “DBpedia”, available at: http://wiki.dbpedia.org’

Ding, L., Xiao, G., Pano, A., Stadler, C. and Calvanese, D. (2021), “Towards the next generation of the
LinkedGeoData project using virtual knowledge graphs”, Journal of Web Semantics, Vol. 71,
p. 100662, available at: www.sciencedirect.com/science/article/pii/S1570826821000378

Endris, K.M., Faisal, S., Orlandi, F., Auer, S. and Scerri, S. (2015), “Interest-based RDF update
propagation”, Proceedings of the 14th International Conference on the Semantic Web - ISWC
2015 - Volume 9366, Springer-Verlag,NewYork, NY, pp. 513-529.

Faisal, S., Endris, K.M., Shekarpour, S., Auer, S. and Vidal, M.-E. (2016), “Co-evolution of RDF datasets”,
in Bozzon, A., Cudre-Maroux, P. and Pautasso, C. (Eds),Web Engineering. ICWE 2016, Lecture
Notes in Computer Science, Springer, Cham, Vol. 9671, doi: 10.1007/978-3-319-38791-8_13.

Fegaras, L. (2011), “Incremental maintenance of materialized xml views”, International Conference on
Database and Expert Systems Applications, Springer-Verlag, Berlin, Heidelberg, pp. 17-32.

Griffin, T. and Libkin, L. (1995), “Incremental maintenance of views with duplicates”, SIGMOD Rec.,
Vol. 24 No. 2, pp. 328-339.

Group, R.W. (2012), “A direct mapping of relational data to RDF”, W3C Recommendation, available at:
www.w3.org/TR/rdb-direct-mapping/

Hert, M., Reif, G. and Gall, H.C. (2011), “A comparison of RDB-to-RDFmapping languages”, Proceedings of the
7th International Conference on Semantic Systems’, I-Semantics, 11,ACM,NewYork, NY, pp. 25-32.

Jin, X. and Liao, H. (2010), “An algorithm for incremental maintenance of materialized XPath view”,
Proceedings of the 11th International Conference on Web-age Information Management’,
WAIM’10, Springer-Verlag, Berlin, Heidelberg, pp. 513-524.

Kalayci, E.G., Grangel Gonz�alez, I., Lösch, F., Xiao, G., ul Mehdi, A., Kharlamov, E. and Calvanese, D.
(2020), “Semantic integration of Bosch manufacturing data using virtual knowledge graphs”, in

RDB2RDF
views

283

https://arxiv.org/abs/2012.01917
http://www.w3.org/TR/r2rml/
http://wiki.dbpedia.org
http://www.sciencedirect.com/science/article/pii/S1570826821000378
http://dx.doi.org/10.1007/978-3-319-38791-8_13
http://www.w3.org/TR/rdb-direct-mapping/

Pan, J.Z., Tamma, V., D’AMATO, C., Janowicz, K., Fu, B., Polleres, A., Seneviratne, O. and Kagal, L.
(Eds),The SemanticWeb – ISWC 2020, Springer International Publishing, Cham, pp. 464-481.

Konstantinou, N., Spanos, D.-E., Kouis, D. and Mitrou, N. (2015), “An approach for the incremental
export of relational databases into RDF graphs”, International Journal on Artificial Intelligence
Tools, Vol. 24 No. 2, p. 1540013.

Lenzerini, M. (2002), “Data integration: a theoretical perspective”, Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems’, PODS ‘02, ACM,
New York, NY, pp. 233-246.

LG (Last accessed in Feb/2022), “LinkedGeoData”, available at: http://linkedgeodata.org/’

Liefke, H. and Davidson, S.B. (2000), “View maintenance for hierarchical semistructured data”,
Proceedings of the Second International Conference on Data Warehousing and Knowledge
Discovery’, DaWaK 2000, Springer-Verlag, London, pp. 114-125.

MBz (Last accessed in Feb/2022), “MusicBrainz database scheme”, available at: https://wiki.
musicbrainz.org/musicbrainz_database/schema

MO (Last accessed in Feb/2022), “Music ontology”, available at: http://musicontology.com/’
Motschnig-Pitrik, R. (2000), “The viewpoint abstraction in object-oriented modeling and the UML”,

Proceedings of the 19th International Conference on Conceptual Modeling’, ER’00, Springer-
Verlag, Berlin, Heidelberg, pp. 543-557.

Murlak, F., Libkin, L., Barcel�o, P. and Arenas, M. (2014), Foundations of Data Exchange, Cambridge
University Press, NewYork, NY.

Mus (Last accessed in Feb/2022), “MusicBrainz”, available at: http://musicbrainz.org/doc/about’

nQu (2014), “RDF 1.1 N-Quads, a line-based syntax for RDF datasets”, W3C Recommendation,
available at: www.w3.org/TR/2014/REC-n-quads-20140225/

Ontotext (2022), “GraphDB free documentation release 9.11.0”.
Pan, J., Vetere, G., Gomez-Perez, J.M. and Wu, H. (Eds) (2017), Exploiting Linked Data and Knowledge

Graphs in Large Organisations, Springer International Publishing.
Papavasileiou, V., Flouris, G., Fundulaki, I., Kotzinos, D. and Christophides, V. (2013), “High-level

change detection in RDF(S) KBs”, ACM Transactions on Database Systems, Vol. 38 No. 1,
p. 42.

Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M. and Rosati, R. (2008), “Linking data
to ontologies”, in Spaccapietra, S. (Ed.), Journal on Data Semantics X, Springer-Verlag, Berlin,
Heidelberg, pp. 133-173, available at: http://dl.acm.org/citation.cfm?id=1793934.1793939

Roussakis, Y., Chrysakis, I., Stefanidis, K., Flouris, G. and Stavrakas, Y. (2015), “A flexible framework
for understanding the dynamics of evolving RDF datasets”, The Semantic Web - ISWC 2015 -
14th International Semantic Web Conference, October 11-15, 2015, Proceedings, Part I, Springer,
Cham, Bethlehem, PA, pp. 495-512.

Sequeda, J.F., Arenas, M. and Miranker, D.P. (2014), “OBDA: query rewriting or materialization? In
practice, both!”, The Semantic Web – ISWC 2014 – 13th International Semantic Web
Conference, October 19-23, 2014, Proceedings, Part I, Springer, Cham, Riva del Garda,
pp. 535-551.

Sequeda, J., Priyatna. F. and, Villaz�on-Terrazas, B. (2012), “Relational database to RDF mapping
patterns”, Proceedings of the 3rd International Conference on Ontology Patterns – Volume 929,
WOP’12, CEUR-WS.org, Aachen, pp. 97-108.

Singh, A.K. (2019), “Regions in a linked dataset for change detection”, ArXiv abs/1905.07663.

Tasnim, M., Collarana, D., Graux, D., Orlandi, F. and Vidal, M.-E. (2019), “Summarizing entity
temporal evolution in knowledge graphs”, Companion Proceedings of the 2019 World Wide
Web Conference’, WWW ‘19, Association for Computing Machinery, New York, NY,
pp. 961-965, doi: 10.1145/3308560.3316521.

IJWIS
18,5/6

284

http://linkedgeodata.org/
https://wiki.musicbrainz.org/musicbrainz_database/schema
https://wiki.musicbrainz.org/musicbrainz_database/schema
http://musicontology.com/
http://musicbrainz.org/doc/about
http://www.w3.org/TR/2014/REC-n-quads-20140225/
http://dl.acm.org/citation.cfm?id=1793934.1793939
http://dx.doi.org/10.1145/3308560.3316521

Vidal, V.M.P., Casanova, M.A. and Cardoso, D.S. (2013), “Incremental maintenance of rdf views of
relational data”, in Proceedings of the The 12th International Conference on Ontologies,
DataBases, and Applications of Semantics, Springer, Graz, pp. 572-587.

Vidal, V.M.P., Casanova, M.A., Neto, L.E.T. and Monteiro, J.M. (2014), “A semi-automatic approach for
generating customized R2RMLmappings”, in Proceedings of the 29th Annual ACM Symposium
on Applied Computing, SAC ‘14, ACM, New York, NY, pp. 316-322.

Vidal, V.M.P., Lemos, F.C., da Silva Araujo, V. and Casanova, M.A. (2008), “A mapping-driven
approach for sql/xml view maintenance”, in Proceedings of the Tenth International Conference
on Enterprise Information Systems, DISI, Barcelona, pp. 65-73.

Volz, R., Staab, S. and Motik, B. (2005), “Incrementally maintaining materializations of ontologies
stored in logic databases”, Journal Data Semantics, Vol. 2, pp. 1-34.

Xiao, G., Ding, L., Cogrel, B. and Calvanese, D. (2019), “Virtual knowledge graphs: an overview of
systems and use cases”,Data Intelligence, Vol. 1 No. 3, pp. 201-223.

Xiao, G., Lanti, D., Kontchakov, R., Komla-Ebri, S., Güzel-Kalayc i, E., Ding, L., Corman, J., Cogrel, B.,
Calvanese, D. and Botoeva, E. (2020), “The virtual knowledge graph system on top”, in Pan, J.Z.,
Tamma, V., d’Amato, C., Janowicz, K., Fu, B., Polleres, A., Seneviratne, O. and Kagal, L. (Eds),
The SemanticWeb – ISWC 2020, Springer International Publishing, Cham, pp. 259-277.

Zeginis, D., Tzitzikas, Y. and Christophides, V. (2011), “On computing deltas of RDF/S knowledge
bases”,ACMTransactionWeb, Vol. 5 No. 3, pp. 1-14.

Zhao, W., Rusu, F., Dong, B., Wu, K. and Nugent, P. (2017), “Incremental view maintenance over array
data”, Proceedings of the 2017 ACM International Conference on Management of Data,
SIGMOD ‘17,ACM,NewYork, NY, pp. 139-154.

Corresponding author
Vania Vidal can be contacted at: vvidal@lia.ufc.br

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

RDB2RDF
views

285

mailto:vvidal@lia.ufc.br

	Publication and maintenance of RDB2RDF views externally materialized in enterprise knowledge graphs
	1. Introduction
	2. Related work
	2.1 Incremental maintenance problem
	2.2 Knowledge graph evolution
	2.3 Virtual knowledge graph approaches

	3. Object preserving RDB2RDF views
	3.1 Basic concepts and notation
	3.2 Specification of object preserving RDB2RDF view

	4. Case study: MusicBrainz_RDF
	5. Materialization of the data graph for an RDB2RDF view
	6. Formal framework for computing correct changesets for RDB2RDF views
	6.1 Overview
	6.2 Identifying relevant relations
	6.3 Identifying relevant tuples
	6.4 Computing changesets

	7. Implementation and experiments
	7.1 Part I – Overhead caused by computing changesets using triggers
	7.2 Part II – Evaluation of relevant tuples rematerialization against full and partial rematerialization approaches
	7.3 Part III – Evaluation of our strategy against incremental maintenance of relational views

	8. Conclusions and final remarks
	References

