To read this content please select one of the options below:

Punching shear behaviour of flat slabs with different reinforcement schemes: openings and rectangularity effects

Donia Salman (Civil and Infrastructure Engineering Department, Al-Zaytoonah University of Jordan, Amman, Jordan)
Rabab Allouzi (Department of Civil Engineering, The University of Jordan, Amman, Jordan)
Nasim Shatarat (Department of Civil Engineering, The University of Jordan, Amman, Jordan)

International Journal of Structural Integrity

ISSN: 1757-9864

Article publication date: 29 April 2021

Issue publication date: 9 August 2021

231

Abstract

Purpose

The main goal is to investigate the effect of size and location of opening and column size on the punching shear strength. Openings are often needed in order to install mechanical and electrical services. This process takes away part of the concrete volume which is responsible for resisting the shear forces and any unbalanced moment. Furthermore, the application of rectangular columns in flat slabs is commonly used in practice as they provide lateral stiffness to the building. They are also utilised in garages and multi-storey buildings where these elongated cross-sectional columns reduce the effective span length between adjacent columns.

Design/methodology/approach

This research is a numerical-based investigation that is calibrated based on a thirteen previously tested and numerically calibrated slab specimens with no openings. A parametric study is conducted in this study to consider the effect of other parameters, which are the size and location of opening and the rectangularity ratio of column in order to evaluate their effect on the punching shear capacity. A total of 156 models are developed to study these factors. Additionally, the predicted shear carrying capacity of the simulated slabs is calculated using the ACI318–19 and Eurocode (EC2-04) equation.

Findings

The presence of openings reduced the punching shear capacity. The small opening's location and orientation have almost no effect except for one slab. For slabs of large openings, the presence of openings reduced the punching capacity. The punching capacity is higher when the openings are farther from the column. The numerically obtained results of slabs with rectangular columns show lower punching capacity compared to slabs of squared columns with the same length of the punching shear control perimeter. The punching capacity for all slabs is predicted by ACI318–19 and Eurocode (EC2-04) and it is found that Eurocode (EC2-04) provided a closer estimation.

Originality/value

The slabs considered for calibration were reinforced with four different punching shear reinforcement configurations, namely; ordinary closed rectangular stirrups, rectangular spiral stirrups, advanced rectangular spiral stirrups and circular spiral. Generally, there has been limited research on concrete flat slabs with openings in comparison with other subjects related to structural engineering (Guan, 2009) and no research on punching shear with openings of slabs reinforced with these reinforcement schemes. The available research focussed on the effects of openings on the flexural behaviour of reinforced concrete slabs includes Casadei et al. (2003), Banu et al. (2012) and Elsayed et al. (2009). In addition, experimental tests that examined slabs supported on rectangular columns are very limited.

Keywords

Citation

Salman, D., Allouzi, R. and Shatarat, N. (2021), "Punching shear behaviour of flat slabs with different reinforcement schemes: openings and rectangularity effects", International Journal of Structural Integrity, Vol. 12 No. 4, pp. 589-612. https://doi.org/10.1108/IJSI-08-2020-0079

Publisher

:

Emerald Publishing Limited

Copyright © 2021, Emerald Publishing Limited

Related articles