Multi-length scale computational analysis of roller-bearing premature failure in horizontal-axis wind turbine gear boxes

M. Grujicic (Department of Mechanical Engineering, Clemson University, Clemson, SC, USA)
V. Chenna (Department of Mechanical Engineering, Clemson University, Clemson, SC, USA)
R. Yavari (Department of Mechanical Engineering, Clemson University, Clemson, SC, USA)
R. Galgalikar (Department of Mechanical Engineering, Clemson University, Clemson, SC, USA)
J.S. Snipes (Department of Mechanical Engineering, Clemson University, Clemson, SC, USA)
S. Ramaswami (Department of Mechanical Engineering, Clemson University, Clemson, SC, USA)

International Journal of Structural Integrity

ISSN: 1757-9864

Publication date: 2 February 2015

Abstract

Purpose

To make wind energy (one of the alternative-energy production technologies) economical, wind-turbines (convertors of wind energy into electrical energy) are required to operate, with only regular maintenance, for at least 20 years. However, some key wind-turbine components (especially the gear-box) often require significant repair or replacement after only three to five years in service. This causes an increase in both the wind-energy cost and the cost of ownership of the wind turbine. The paper aims to discuss these issues.

Design/methodology/approach

To overcome this problem, root causes of the gear-box premature failure are currently being investigated using mainly laboratory and field-test experimental approaches. As demonstrated in many industrial sectors (e.g. automotive, aerospace, etc.) advanced computational engineering methods and tools cannot only complement these experimental approaches but also provide additional insight into the problem at hand (and do so with a substantially shorter turn-around time). The present work demonstrates the use of a multi-length-scale computational approach which couples large-scale wind/rotor interactions with a gear-box dynamic response, enabling accurate determination of kinematics and kinetics within the gear-box bearings (the components most often responsible for the gear-box premature failure) and ultimately the structural response (including damage and failure) of the roller-bearing components (e.g. inner raceways).

Findings

It has been demonstrated that through the application of this approach, one can predict the expected life of the most failure-prone horizontal axis wind turbine gear-box bearing elements.

Originality/value

To the authors’ knowledge, the present work is the first multi-length-scale study of bearing failure in wind-turbines.

Keywords

Acknowledgements

The authors would like to thank Dr Jonathan Keller of NREL for providing the FAST HAWT model and the SIMPACK gear-box model, as well as for the interest in the present work. The authors would also like to acknowledge constructive interactions with, and encouragement by, Drs Andrei Mander and Nicholas Rigas of the Wind-Turbine Drivetrain Testing Facility, Clemson University Restoration Institute, North Charleston, SC.

Citation

Grujicic, M., Chenna, V., Yavari, R., Galgalikar, R., Snipes, J.S. and Ramaswami, S. (2015), "Multi-length scale computational analysis of roller-bearing premature failure in horizontal-axis wind turbine gear boxes", International Journal of Structural Integrity, Vol. 6 No. 1, pp. 40-72. https://doi.org/10.1108/IJSI-04-2014-0016

Publisher

:

Emerald Group Publishing Limited

Copyright © 2015, Emerald Group Publishing Limited

To read the full version of this content please select one of the options below

You may be able to access this content by logging in via Shibboleth, Open Athens or with your Emerald account.
To rent this content from Deepdyve, please click the button.
If you think you should have access to this content, click the button to contact our support team.