To read this content please select one of the options below:

Research on improving YOLOv5s algorithm for fabric defect detection

Shi Zhou (Department of Mechanical Engineering and Automation, Wuhan Textile University – Yangguang Campus, Wuhan, China)
Jia Zhao (Department of Mechanical Engineering and Automation, Wuhan Textile University – Yangguang Campus, Wuhan, China)
Yi Shan Shi (Department of Mechanical Engineering and Automation, Wuhan Textile University – Yangguang Campus, Wuhan, China)
Yi Fan Wang (Department of Mechanical Engineering and Automation, Wuhan Textile University – Yangguang Campus, Wuhan, China)
Shun Qi Mei (Department of Mechanical Engineering and Automation, Wuhan Textile University – Yangguang Campus, Wuhan, China)

International Journal of Clothing Science and Technology

ISSN: 0955-6222

Article publication date: 11 October 2022

Issue publication date: 7 March 2023

304

Abstract

Purpose

In the fabric manufacturing industry, various unfavorable factors, including machine fault and yarn breakage, can easily cause fabric defects and affect product quality, begetting huge economic losses to enterprises. Thus, automatic fabric defect detection systems have become an important development direction. Herein, the most common defects in the fabric production process, like ribbon yarn, broken yarn, cotton ball, holes, yarn shedding and stains, are detected. Current fabric defect detection systems afford low detection accuracy and a high missed detection rate for small target fabric defects. Therefore, this study proposes deep learning technology for automatically detecting fabric defects by improving the YOLOv5s target detection algorithm. The improved algorithm is termed YOLOv5s-4SCK, which can effectively detect fabric defects. This study aims to discuss the aforementioned issues.

Design/methodology/approach

Specifically, based on the YOLOv5s algorithm, first, the structure of YOLOv5s is modified to add a small target detection layer, fully utilize deep and shallow features and reduce the missed detection rate of small target fabric defects. Second, the integration of CARAFE upsampling enables the effective retention of feature information and maintenance of a certain computational efficiency, thereby improving the detection accuracy. Finally, the K-Means++ clustering algorithm is used to analyze the position of the center point of the prior box to better obtain the anchor box and improve the average accuracy and evaluation index of detection.

Findings

The research results show that the YOLOv5s-4SCK algorithm increases the accuracy by 4.1% and the detection speed by 2 f.s-1 compared to the original YOLOv5s algorithm, and it effectively improves the original YOLOv5s problem of high missed detection rate of small targets.

Research limitations/implications

The YOLOv5s-4SCK proposed in this paper can effectively reduce the missed detection rate of fabric defects, improve the detection efficiency and has certain industrial value.

Practical implications

The proposed algorithm can quickly identify fabric defects, effectively improving the detection rate. In the future, the proposed algorithm will be applied in the actual industry.

Social implications

Automatic fabric defect detection reduces the manpower of inspectors, and the proposed YOLOv5s-4SCK algorithm is also suitable for other recognition fields.

Originality/value

The proposed YOLOv5s-4SCK algorithm has been tested using real cloth to ensure its accuracy, and its performance is better than the original YOLOv5s algorithm.

Keywords

Acknowledgements

Funding: This paper is supported by Science and Technology Program of Hubei Province (No. 2019AEE011).

Citation

Zhou, S., Zhao, J., Shi, Y.S., Wang, Y.F. and Mei, S.Q. (2023), "Research on improving YOLOv5s algorithm for fabric defect detection", International Journal of Clothing Science and Technology, Vol. 35 No. 1, pp. 88-106. https://doi.org/10.1108/IJCST-11-2021-0165

Publisher

:

Emerald Publishing Limited

Copyright © 2022, Emerald Publishing Limited

Related articles