To read this content please select one of the options below:

New correlations for wavy plate-fin heat exchangers: different working fluids

Morteza Khoshvaght Aliabadi (School of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran)
Faramarz Hormozi (School of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran)
Elham Hosseini Rad (School of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 27 May 2014

595

Abstract

Purpose

The main purpose of this paper is the generation of the heat transfer and pressure drop correlations by considering three working fluids, namely air, water, and ethylene glycol, for the wavy plate-fin heat exchangers (PFHEs).

Design/methodology/approach

In order to present the general correlations, various models with different geometrical parameters should be tested. Because of the problems, such as difficult, long time, and costly fabrication of the wavy fins in experimental tests, computational fluid dynamics (CFD) calculations can be a useful method for the generation of the heat transfer and pressure drop correlations with eliminating the experimental problems. Hence, the effective design parameters of the wavy plate-fin, including fin pitch, fin height, wave length, fin thickness, wave amplitude, and fin length, and also their levels were recognized from the literature. The Taguchi method was applied to formulate the CFD simulation work.

Findings

The simulation results were compared and validated with an available experimental data. The mean deviations of the Colburn factor, j, and Fanning friction factor, f, values between the simulation results and the experimental data were 3.74 and 9.07 percent, respectively. The presented air correlations and experimental data were in a good agreement, so that approximately 95 percent of the experimental data were correlated within ±12 percent. The j factor values varied for the different working fluids, while the f factor values did not sensibly change.

Practical implications

The presented correlations can be used to estimate the thermal-hydraulic characteristics and to design of the compact PFHE with the wavy channels.

Originality/value

This manuscript presents the new correlations for the compact PFHEs with the way channels by considering all the geometrical parameters and the working fluids with the different Prandtl numbers, 0.7, 7, and 150.

Keywords

Citation

Khoshvaght Aliabadi, M., Hormozi, F. and Hosseini Rad, E. (2014), "New correlations for wavy plate-fin heat exchangers: different working fluids", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 24 No. 5, pp. 1086-1108. https://doi.org/10.1108/HFF-09-2012-0195

Publisher

:

Emerald Group Publishing Limited

Copyright © 2014, Emerald Group Publishing Limited

Related articles