To read this content please select one of the options below:

Performing indoor PM2.5 prediction with low-cost data and machine learning

Brent Lagesse (Department of Computing and Software Systems, University of Washington Bothell, Bothell,Washington, USA)
Shuoqi Wang (Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA)
Timothy V. Larson (Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA)
Amy Ahim Kim (Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA)

Facilities

ISSN: 0263-2772

Article publication date: 8 March 2022

Issue publication date: 7 April 2022

110

Abstract

Purpose

The paper aims to develop a particle matter (PM2.5) prediction model for open-plan office space using a variety of data sources. Monitoring of PM2.5 levels is not widely applied in indoor settings. Many reliable methods of monitoring PM2.5 require either time-consuming or expensive equipment, thus making PM2.5 monitoring impractical for many settings. The goal of this paper is to identify possible low-cost, low-effort data sources that building managers can use in combination with machine learning (ML) models to approximate the performance of much more costly monitoring devices.

Design/methodology/approach

This study identified a variety of data sources, including freely available, public data, data from low-cost sensors and data from expensive, high-quality sensors. This study examined a variety of neural network architectures, including traditional artificial neural networks, generalized recurrent neural networks and long short-term memory neural networks as candidates for the prediction model. The authors trained the selected predictive model using this data and identified data sources that can be cheaply combined to approximate more expensive data sources.

Findings

The paper identified combinations of free data sources such as building damper percentages and weather data and low-cost sensors such as Wi-Fi-based occupancy estimator or a Plantower PMS7003 sensor that perform nearly as well as predictions made based on nephelometer data.

Originality/value

This work demonstrates that by combining low-cost sensors and ML, indoor PM2.5 monitoring can be performed at a drastically reduced cost with minimal error compared to more traditional approaches.

Keywords

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant Nos. 1852995 and 1853953.

Anonymized for review.

Citation

Lagesse, B., Wang, S., Larson, T.V. and Kim, A.A. (2022), "Performing indoor PM2.5 prediction with low-cost data and machine learning", Facilities, Vol. 40 No. 7/8, pp. 495-514. https://doi.org/10.1108/F-05-2021-0046

Publisher

:

Emerald Publishing Limited

Copyright © 2022, Emerald Publishing Limited

Related articles