To read the full version of this content please select one of the options below:

Design of fluid components using the topological optimization method

L.C. Ruspini (Petricore Norway AS, Trondheim, Norway)
E. Dari (Department of Computational Mechanics, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina)
C. Padra (Department of Computational Mechanics, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina)
G.H. Paissan (Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina)
N.N. Salva (Department of Computational Mechanics, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina)

Engineering Computations

ISSN: 0264-4401

Article publication date: 19 July 2019

Issue publication date: 15 August 2019

Downloads
98

Abstract

Purpose

The purpose of this paper is to present applications of the topological optimization method dealing with fluid dynamic problems in two- and three dimensions. The main goal is to develop a tool package able to optimize topology in realistic devices (e.g. inlet manifolds) considering the non-linear terms on Navier–Stokes equations.

Design/methodology/approach

Using an in-house Fortran code, a Galerkin stabilized finite element is implemented method to solve the three equation systems necessary for the topological optimization method: the direct problem, adjoint problem and topological derivative. The authors address the non-linearity in the equations using an iterative method. Different techniques to create holes into a two-dimensional discrete domain are analyzed.

Findings

One technique to create holes produces more accurate and robust results. The authors present several examples of applications in two- and three-dimensional components, which highlight the potential of this method in the optimization of fluid components.

Research limitations/implications

The authors contribute to the methodology and design in engineering.

Practical implications

Engineering fluid flow systems are used in many different industrial applications, e.g. oil flow in pipes; air flow around an airplane wing; sailing submarines; blood flow in synthetic arteries; and thermal and fissure spreading problems. The aim of this work is to create an effective design tool for obtaining efficient engineering structures and devices.

Originality/value

The authors contribute by creating an application of the method to design a tridimensional realistic device, which can be essayed experimentally. Particularly, the authors apply the design tool to an inlet manifold.

Keywords

Acknowledgements

The authors are grateful to the anonymous referees for their valuable comments, concerns and additional references. The present work has been partially sponsored by PIP 11220130100829CO from CONICET.

Citation

Ruspini, L.C., Dari, E., Padra, C., Paissan, G.H. and Salva, N.N. (2019), "Design of fluid components using the topological optimization method", Engineering Computations, Vol. 36 No. 5, pp. 1430-1448. https://doi.org/10.1108/EC-11-2018-0527

Publisher

:

Emerald Publishing Limited

Copyright © 2019, Emerald Publishing Limited