Arabic supervised learning method using N‐gram

Majed Sanan (Paris 8 University, Paris, France)
Mahmoud Rammal (Lebanese University, Beirut, Lebanon)
Khaldoun Zreik (Paris 8 University, Paris, France)

Interactive Technology and Smart Education

ISSN: 1741-5659

Publication date: 22 August 2008

Abstract

Purpose

Recently, classification of Arabic documents is a real problem for juridical centers. In this case, some of the Lebanese official journal documents are classified, and the center has to classify new documents based on these documents. This paper aims to study and explain the useful application of supervised learning method on Arabic texts using N‐gram as an indexing method (n  =  3).

Design/methodology/approach

The Lebanese official journal documents are categorized into several classes. Supposing that we know the class(es) of some documents (called learning texts), this can help to determine the candidate words of each class by segmenting the documents.

Findings

Results showed that N‐gram text classification using the cosine coefficient measure outperforms classification using Dice's measure and TF*ICF weight. Then it is the best between the three measures but it still insufficient. N‐gram method is good, but still insufficient for the classification of Arabic documents, and then it is necessary to look at the future of a new approach like distributional or symbolic approach in order to increase the effectiveness.

Originality/value

The results could be used to improve Arabic document classification (using software also). This work has evaluated a number of similarity measures for the classification of Arabic documents, using the Lebanese parliament documents and especially the Lebanese official journal documents Arabic corpus as the test bed.

Keywords

Citation

Sanan, M., Rammal, M. and Zreik, K. (2008), "Arabic supervised learning method using N‐gram", Interactive Technology and Smart Education, Vol. 5 No. 3, pp. 157-169. https://doi.org/10.1108/17415650810908249

Download as .RIS

Publisher

:

Emerald Group Publishing Limited

Copyright © 2008, Emerald Group Publishing Limited

Please note you might not have access to this content

You may be able to access this content by login via Shibboleth, Open Athens or with your Emerald account.
If you would like to contact us about accessing this content, click the button and fill out the form.
To rent this content from Deepdyve, please click the button.