Books and journals Case studies Expert Briefings Open Access
Advanced search

Basis pursuit‐based intelligent diagnosis of bearing faults

Hongyu Yang (CRC for Integrated Engineering Asset Management, School of Engineering Systems, Queensland University of Technology, Brisbane, Australia)
Joseph Mathew (CRC for Integrated Engineering Asset Management, School of Engineering Systems, Queensland University of Technology, Brisbane, Australia)
Lin Ma (CRC for Integrated Engineering Asset Management, School of Engineering Systems, Queensland University of Technology, Brisbane, Australia)

Journal of Quality in Maintenance Engineering

ISSN: 1355-2511

Publication date: 5 June 2007

Abstract

Purpose

–

The purpose of this article is to present a new application of pursuit‐based analysis for diagnosing rolling element bearing faults.

Design/methodology/approach

–

Intelligent diagnosis of rolling element bearing faults in rotating machinery involves the procedure of feature extraction using modern signal processing techniques and artificial intelligence technique‐based fault detection and identification. This paper presents a comparative study of both the basis and matching pursuits when applied to fault diagnosis of rolling element bearings using vibration analysis.

Findings

–

Fault features were extracted from vibration acceleration signals and subsequently fed to a feed forward neural network (FFNN) for classification. The classification rate and mean square error (MSE) were calculated to evaluate the performance of the intelligent diagnostic procedure. Results from the basis pursuit fault diagnosis procedure were compared with the classification result of a matching pursuit feature‐based diagnostic procedure. The comparison clearly illustrates that basis pursuit feature‐based fault diagnosis is significantly more accurate than matching pursuit feature‐based fault diagnosis in detecting these faults.

Practical implications

–

Intelligent diagnosis can reduce the reliance on experienced personnel to make expert judgements on the state of the integrity of machines. The proposed method has the potential to be extensively applied in various industrial scenarios, although this application concerned rolling element bearings only. The principles of the application are directly translatable to other parts of complex machinery.

Originality/value

–

This work presents a novel intelligent diagnosis strategy using pursuit features and feed forward neural networks. The value of the work is to ease the burden of making decisions on the integrity of plant through a manual program in condition monitoring and diagnostics particularly of complex pieces of plant.

Keywords

  • Pattern recognition
  • Condition monitoring
  • Neural nets

Citation

Yang, H., Mathew, J. and Ma, L. (2007), "Basis pursuit‐based intelligent diagnosis of bearing faults", Journal of Quality in Maintenance Engineering, Vol. 13 No. 2, pp. 152-162. https://doi.org/10.1108/13552510710753050

Download as .RIS

Publisher

:

Emerald Group Publishing Limited

Copyright © 2007, Emerald Group Publishing Limited

Please note you do not have access to teaching notes

You may be able to access teaching notes by logging in via Shibboleth, Open Athens or with your Emerald account.
Login
If you think you should have access to this content, click the button to contact our support team.
Contact us

To read the full version of this content please select one of the options below

You may be able to access this content by logging in via Shibboleth, Open Athens or with your Emerald account.
Login
To rent this content from Deepdyve, please click the button.
Rent from Deepdyve
If you think you should have access to this content, click the button to contact our support team.
Contact us
Emerald Publishing
  • Opens in new window
  • Opens in new window
  • Opens in new window
  • Opens in new window
© 2021 Emerald Publishing Limited

Services

  • Authors Opens in new window
  • Editors Opens in new window
  • Librarians Opens in new window
  • Researchers Opens in new window
  • Reviewers Opens in new window

About

  • About Emerald Opens in new window
  • Working for Emerald Opens in new window
  • Contact us Opens in new window
  • Publication sitemap

Policies and information

  • Privacy notice
  • Site policies
  • Modern Slavery Act Opens in new window
  • Chair of Trustees governance statement Opens in new window
  • COVID-19 policy Opens in new window
Manage cookies

We’re listening — tell us what you think

  • Something didn’t work…

    Report bugs here

  • All feedback is valuable

    Please share your general feedback

  • Member of Emerald Engage?

    You can join in the discussion by joining the community or logging in here.
    You can also find out more about Emerald Engage.

Join us on our journey

  • Platform update page

    Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

  • Questions & More Information

    Answers to the most commonly asked questions here