CFD analysis of a PEM fuel cell for liquid dispersion at the interface of GDL‐GFC

A.B. Mahmud Hasan (Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia, USA and Mechanical Engineering and Materials Science Department, University of Pittsburgh, Pittsburgh, Pennsylvania, USA)
M.A. Wahab (Department of Mechanical Engineering, Louisiana State University, Baton Rouge, Louisiana, USA)
S.M. Guo (Department of Mechanical Engineering, Louisiana State University, Baton Rouge, Louisiana, USA)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Publication date: 20 September 2011

Abstract

Purpose

The purpose of this paper is to present the results of analysis of the transport gases and liquid water between the gas diffusion layer (GDL) and gas flow channel (GFC) of proton exchange membrane fuel cells (PEMFCs). These results are then used to describe the effects of the GDL‐GFC interfacial conditions on the general performance of PEMFCs.

Design/methodology/approach

This analysis utilizes finite element analysis commercial codes to illustrate the transport of fluids. The gas transport data obtained from the solution are compared with the established works of others. The liquid transport processes are modeled using the Darcy equation coupled with a saturation‐capillary pressure function (the Leverett function) and assuming no phase change. In addition, the boundary conditions for the liquid transport equation are varied in order to show the extent of non‐uniformities at the GDL‐GFC interface.

Findings

Analysis shows that water dispersion from the GDL‐GFC interface extends across the GDL to its other side, and eventually reduces the performance of the PEMFC.

Research limitations/implications

It is well known that CFD simulation of fuel cells is, in general, still facing significant challenges due to the limited understanding of the complex physical and chemical processes existing within the fuel cell. The model is now under further development to improve its capabilities and undergoing further validations.

Practical implications

The simulations can provide detailed information on some of the key fluid dynamics, physical and chemical/electro‐chemical processes that exist in liquid dispersion at the interface of GDL‐GFC in fuel cells which are critical for fuel cell design and optimization.

Originality/value

The simulation can be used to understand liquid dispersion at the interface of GDL‐GFC and provide and alternative to experimental investigations in order to improve the performance of fuel cell.

Keywords

Citation

Mahmud Hasan, A., Wahab, M. and Guo, S. (2011), "CFD analysis of a PEM fuel cell for liquid dispersion at the interface of GDL‐GFC", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 21 No. 7, pp. 810-821. https://doi.org/10.1108/09615531111162792

Download as .RIS

Publisher

:

Emerald Group Publishing Limited

Copyright © 2011, Emerald Group Publishing Limited

Please note you might not have access to this content

You may be able to access this content by login via Shibboleth, Open Athens or with your Emerald account.
If you would like to contact us about accessing this content, click the button and fill out the form.
To rent this content from Deepdyve, please click the button.