Optical tomography with the equation of radiative transfer
International Journal of Numerical Methods for Heat & Fluid Flow
ISSN: 0961-5539
Article publication date: 22 May 2008
Abstract
Purpose
This paper sets out to give an overview about state‐of‐the‐art optical tomographic image reconstruction algorithms that are based on the equation of radiative transfer (ERT).
Design/methodology/approach
An objective function, which describes the discrepancy between measured and numerically predicted light intensity data on the tissue surface, is iteratively minimized to find the unknown spatial distribution of the optical parameters or sources. At each iteration step, the predicted partial current is calculated by a forward model for light propagation based on the ERT. The equation of radiative is solved with either finite difference or finite volume methods.
Findings
Tomographic reconstruction algorithms based on the ERT accurately recover the spatial distribution of optical tissue properties and light sources in biological tissue. These tissues either can have small geometries/large absorption coefficients, or can contain void‐like inclusions.
Originality/value
These image reconstruction methods can be employed in small animal imaging for monitoring blood oxygenation, in imaging of tumor growth, in molecular imaging of fluorescent and bioluminescent probes, in imaging of human finger joints for early diagnosis of rheumatoid arthritis, and in functional brain imaging.
Keywords
Citation
Klose, A.D. and Hielscher, A.H. (2008), "Optical tomography with the equation of radiative transfer", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 18 No. 3/4, pp. 443-464. https://doi.org/10.1108/09615530810853673
Publisher
:Emerald Group Publishing Limited
Copyright © 2008, Emerald Group Publishing Limited