To read this content please select one of the options below:

A finite element method with composite shape functions

Alireza Sadeghirad (Department of Civil Engineering, University of Tehran, Tehran, Islamic Republic of Iran)
Ali Vaziri Astaneh (Department of Civil Engineering, University of Tehran, Tehran, Islamic Republic of Iran)

Engineering Computations

ISSN: 0264-4401

Article publication date: 31 May 2011

501

Abstract

Purpose

The purpose of this paper is to present the composite finite element method (CFEM), with Cn(n≥0) continuity so it improves the accuracy of the finite element method (FEM) for solving second‐order partial differential equations (PDEs) and also, can be used for solving higher order PDEs.

Design/methodology/approach

In this method, the nodal values in the conventional FEM have been replaced by the appropriate nodal functions. Based on this idea, a procedure has been proposed for obtaining the CFEMCn shape functions based on the CFEMCn−1 shape functions as follows: the nodal values in the CFEMCn−1 have been replaced by deliberately selected nodal functions so that the smoothness of the CFEMCn−1 shape functions increase.

Findings

The proposed method has the following properties: first, its shape functions have simple explicit forms with respect to the natural coordinates of elements and consequently, the required integrals for calculation of stiffness matrix can be evaluated numerically by low‐order Gauss quadratures; second, numerical investigations show that the CFEM with Cn(n>1) continuity leads to more accurate results in comparison with the FEM; third, in multi‐dimensional problems, the curved boundaries are modeled more accurately by the proposed method in comparison with the FEM; fourth, this method can treat with the weak discontinuities such as the interface between different materials, as simple as the FEM does; and fifth, this method can successfully model Kirchhoff plate problems.

Originality/value

This method is an improvement of the moving particle FEM and reproducing kernel element method. Despite these two methods, CFEM shape functions have simple explicit forms with respect to the natural coordinates of elements.

Keywords

Citation

Sadeghirad, A. and Vaziri Astaneh, A. (2011), "A finite element method with composite shape functions", Engineering Computations, Vol. 28 No. 4, pp. 389-423. https://doi.org/10.1108/02644401111131867

Publisher

:

Emerald Group Publishing Limited

Copyright © 2011, Emerald Group Publishing Limited

Related articles