To read this content please select one of the options below:

Predicting temperature profiles in producing oil wells using artificial neural networks

Fred F. Farshad (University of Louisiana, Lafayette, Louisiana, USA)
James D. Garber (University of Louisiana, Lafayette, Louisiana, USA)
Juliet N. Lorde (University of Louisiana, Lafayette, Louisiana, USA)

Engineering Computations

ISSN: 0264-4401

Article publication date: 1 September 2000

1167

Abstract

A novel approach using artificial neural networks (ANNs) for predicting temperature profiles evaluated 27 wells in the Gulf of Mexico. Two artificial neural network models were developed that predict the temperature of the flowing fluid at any depth in flowing oil wells. Back propagation was used in training the networks. The networks were tested using measured temperature profiles from the 27 oil wells. Both neural network models successfully mapped the general temperature‐profile trends of naturally flowing oil wells. The highest accuracy was achieved with a mean absolute relative percentage error of 6.0 per cent. The accuracy of the proposed neural network models to predict the temperature profile is compared to that of existing correlations. Many correlations to predict temperature profiles of the wellbore fluid, for single‐phase or multiphase flow, in producing oil wells have been developed using theoretical principles such as energy, mass and momentum balances coupled with regression analysis. The Neural Network 2 model exhibited significantly lower mean absolute relative percentage error than other correlations. Furthermore, in order to test the accuracy of the neural network models to that of Kirkpatrick’s correlation, a mathematical model was developed for Kirkpatrick’s flowing temperature gradient chart.

Keywords

Citation

Farshad, F.F., Garber, J.D. and Lorde, J.N. (2000), "Predicting temperature profiles in producing oil wells using artificial neural networks", Engineering Computations, Vol. 17 No. 6, pp. 735-754. https://doi.org/10.1108/02644400010340651

Publisher

:

MCB UP Ltd

Copyright © 2000, MCB UP Limited

Related articles