To read the full version of this content please select one of the options below:

A neural predictor to analyse the effects of metal matrix composite structure (6063 Al/SiCp MMC) on journal bearing

Cem Sinanoğlu (Tribology Research Laboratory, Mechanical Engineering Department, Engineering Faculty, Erciyes University, Kayseri, Turkey)

Industrial Lubrication and Tribology

ISSN: 0036-8792

Article publication date: 1 March 2006



To discuss the effects of metal matrix composite (MMC) journal structure on the pressure distribution and, consequently, on the load‐carrying capacity of the bearing are predicted using feed forward architecture of neurons.


The inputs to the networks are the collection of experimental data. These data are used to train the network using the Batch Back‐prop, Online Back‐prop and Quickprop algorithms.


The neural network (NN) model outperforms the available experimental model in predicting the pressure as well as the load‐carrying capacity.

Research limitations/implications

The experiment specimens used in this study have been made of MMC with aluminum based reinforced with SiC ceramic particles, using the stir casting technique. Various composite journal structures can be investigated.

Practical implications

The simulation results suggest that the neural predictor would be used as a predictor for possible experimental applications on modelling journal bearing system.


This paper discusses a new modelling scheme known as artificial NNs. An experimental and a NN approach have been employed for analysing MMC journal structure for hydrodynamic journal bearings and their effects on the system performance.



Sinanoğlu, C. (2006), "A neural predictor to analyse the effects of metal matrix composite structure (6063 Al/SiCp MMC) on journal bearing", Industrial Lubrication and Tribology, Vol. 58 No. 2, pp. 95-109.



Emerald Group Publishing Limited

Copyright © 2006, Emerald Group Publishing Limited