The safety of shipborne helicopter operation

Simon Newman (Aerospace Engineering, School of Engineering Sciences, University of Southampton, UK and is also a Member of the Aviation Panel of the Institute of Measurement and Control, London, UK)

Aircraft Engineering and Aerospace Technology

ISSN: 0002-2667

Publication date: 1 October 2004

Abstract

The helicopter has been in existence, in its present form for over 50 years and it possesses a wide variety of operational use. This paper focuses on the development of the shipborne helicopter which requires controlled flight in a very complex and potentially dangerous atmospheric environment surrounding a ship's flight deck. This type of helicopter requires dedicated design features to enable appropriate missions to be successfully achieved. It is an interesting feature of the shipborne helicopter that operational problems are as important with the aircraft in contact with the deck as to flight above it. Also there are problems, which begin with extracting the aircraft to the hangar to its eventual reinsertion. The avoidance of unfavourable characteristics has, over the years, resulted in an air vehicle where the aeroelastic properties of the rotor blades govern the operation. The magnitude of the wind speeds over a ship's deck, coupled with the varying rotor speed during the engage and disengage parts of a sortie, expose the rotors to dangerous blade deflections which have, in the past, resulted in damage to the aircraft and, in severe cases, fatalities.

Keywords

Citation

Newman, S. (2004), "The safety of shipborne helicopter operation", Aircraft Engineering and Aerospace Technology, Vol. 76 No. 5, pp. 487-501. https://doi.org/10.1108/00022660410555167

Publisher

:

Emerald Group Publishing Limited

Copyright © 2004, Emerald Group Publishing Limited

To read the full version of this content please select one of the options below

You may be able to access this content by logging in via Shibboleth, Open Athens or with your Emerald account.
To rent this content from Deepdyve, please click the button.
If you think you should have access to this content, click the button to contact our support team.