Search results

1 – 10 of over 14000
Article
Publication date: 27 September 2019

Elham Rezaee and Alireza Pooya

The purpose of this paper is to explore the relationship between effective strategies to improve the quality and quality management of allocated resources for the successful…

Abstract

Purpose

The purpose of this paper is to explore the relationship between effective strategies to improve the quality and quality management of allocated resources for the successful implementation of the strategies. For this purpose, three quality management resources (human, organizational and technological) and eight different strategies related to quality are considered.

Design/methodology/approach

The paper employs the fuzzy analytic network process (FANP) to prioritize and model the interactions between eight strategies, the three types of resources (human, organizational and technological) needed for effective strategy implementation and the ability to enhance quality. Then, Goal Programming (GP) is formulated by the output of the FANP to identify the extent to which each single strategy is inhibited by a lack of (or overloaded by) resources.

Findings

The first three priorities of strategies identified by the FANP include continuous management of quality system, continuous use of human knowledge and continuous approach toward target, and the order of resources is as follows: human resources, organizational resources and technological resources. The results obtained showed the largest share of human resources and its crucial role in improving the quality of the products. The contribution of organizational resources amounts to half of the contribution of human resources.

Originality/value

The main contribution of this paper is to employ the FANP to prioritize, whereas in prior studies in this area, priorities were conducted as definitive, and uncertainty in the opinion of experts was not considered. In this paper, the FANP–GP combined method is used.

Details

The TQM Journal, vol. 31 no. 5
Type: Research Article
ISSN: 1754-2731

Keywords

Book part
Publication date: 4 April 2024

Ramin Rostamkhani and Thurasamy Ramayah

This chapter of the book aims to achieve sustainability and productivity in light of the interaction between managers and engineers in a lean and agile supply chain management…

Abstract

This chapter of the book aims to achieve sustainability and productivity in light of the interaction between managers and engineers in a lean and agile supply chain management system in today’s organizations. The main innovation of this chapter is the use of the balanced scorecard (BSC) model and fuzzy analysis network process (FANP) to create a suitable platform for the realization of this interaction between managers and engineers and to identify exactly which expert system is ideal for the main purpose. Indeed, this chapter introduces its readers to the application of strategic management tools such as the BSC accompanied by FANP in the elements of supply chain management where data analysis of lean and agile networks in supply chain management can create a competitive advantage in the organization.

Details

The Integrated Application of Effective Approaches in Supply Chain Networks
Type: Book
ISBN: 978-1-83549-631-2

Keywords

Article
Publication date: 8 February 2022

Arezou Asgharnezhad and Soroush Avakh Darestani

To outsource part of their work, organizations are looking for suppliers who also have green criteria with other criteria. Selecting suppliers begins with the definition of…

Abstract

Purpose

To outsource part of their work, organizations are looking for suppliers who also have green criteria with other criteria. Selecting suppliers begins with the definition of potential suppliers and then selects the best among them. This study aims to present a two-part approach for selecting suppliers consisting of suppliers’ prioritization.

Design/methodology/approach

In the first part, the criteria that influence on selecting the suppliers have been identified and extracted using the literature review and experts’ opinion which consists of 19 criteria. Then, these criteria were evaluated by the content validity ratio index and using experts’ opinions, and finally, 16 criteria were selected for selecting green suppliers in a polyethylene’s products producer company in Iran. In the next step, suppliers are selected in a green supply chain using multi-criteria decision-making methods such as Dempster–Shafer theory and grey relationship analysis, which is a strategic decision.

Findings

This study attempts to improve the level of reliance on the whole uncertain degree by combining Dempster–Shafer theory and grey relational analysis (GRA), which makes the grey analysis method more robust and its results more reliable. The findings show that Supplier 4 is ranked as first within six suppliers.

Originality/value

Using GRA and Dempster–Shafer theory for green supplier selection problem in polyethylene industry is the novelty of this work.

Details

Management Research Review, vol. 45 no. 12
Type: Research Article
ISSN: 2040-8269

Keywords

Content available
Book part
Publication date: 4 April 2024

Ramin Rostamkhani and Thurasamy Ramayah

Abstract

Details

The Integrated Application of Effective Approaches in Supply Chain Networks
Type: Book
ISBN: 978-1-83549-631-2

Book part
Publication date: 5 October 2018

Nima Gerami Seresht, Rodolfo Lourenzutti, Ahmad Salah and Aminah Robinson Fayek

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and…

Abstract

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and relies on the analysis of uncertain, imprecise and incomplete information, including subjective and linguistically expressed information. Various modelling and computing techniques have been used by construction researchers and applied to practical construction problems in order to overcome these challenges, including fuzzy hybrid techniques. Fuzzy hybrid techniques combine the human-like reasoning capabilities of fuzzy logic with the capabilities of other techniques, such as optimization, machine learning, multi-criteria decision-making (MCDM) and simulation, to capitalise on their strengths and overcome their limitations. Based on a review of construction literature, this chapter identifies the most common types of fuzzy hybrid techniques applied to construction problems and reviews selected papers in each category of fuzzy hybrid technique to illustrate their capabilities for addressing construction challenges. Finally, this chapter discusses areas for future development of fuzzy hybrid techniques that will increase their capabilities for solving construction-related problems. The contributions of this chapter are threefold: (1) the limitations of some standard techniques for solving construction problems are discussed, as are the ways that fuzzy methods have been hybridized with these techniques in order to address their limitations; (2) a review of existing applications of fuzzy hybrid techniques in construction is provided in order to illustrate the capabilities of these techniques for solving a variety of construction problems and (3) potential improvements in each category of fuzzy hybrid technique in construction are provided, as areas for future research.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Article
Publication date: 11 October 2019

Seyed Ashkan Zarghami and Indra Gunawan

The purpose of this paper is to attempt to shift away from an exclusive probabilistic viewpoint or a pure network theory-based perspective for vulnerability assessment of…

324

Abstract

Purpose

The purpose of this paper is to attempt to shift away from an exclusive probabilistic viewpoint or a pure network theory-based perspective for vulnerability assessment of infrastructure networks (INs), toward an integrated framework that accounts for joint considerations of the consequences of component failure as well as the component reliability.

Design/methodology/approach

This work introduces a fuzzy inference system (FIS) model that deals with the problem of vulnerability analysis by mapping reliability and centrality to vulnerability. In the presented model, reliability and centrality are first fuzzified, then 16 different rules are defined and finally, a defuzzification process is conducted to obtain the model output, termed the vulnerability score. The FIS model developed herein attempts to explain the linkage between reliability and centrality so as to evaluate the degree of vulnerability for INs elements.

Findings

This paper compared the effectiveness of the vulnerability score in criticality ranking of the components against the conventional vulnerability analysis methods. Comparison of the output of the proposed FIS model with the conventional vulnerability indices reveals the effectiveness of the vulnerability score in identifying the criticality of components. The model result showed the vulnerability score decreases by increasing reliability and decreasing centrality.

Practical implications

Two key practical implications for vulnerability analysis of INs can be drawn from the suggested FIS model in this research. First, the maintenance strategy based on the vulnerability analysis proposed herein will provide an expert facilitator that helps infrastructure utilities to identify and prioritize the vulnerabilities. The second practical implication is especially valuable for designing an effective risk management framework, which allows for least cost decisions to be made for the protection of INs.

Originality/value

As part of the first contribution, we propose a novel fuzzy-based vulnerability assessment model in building a qualitative and quantitative picture of the vulnerability of INs. The second contribution is especially valuable for vulnerability analysis of INs by virtue of offering a key to understanding the component vulnerability principle as being constituted by the component likely behavior as well as the component importance in the network.

Details

Engineering, Construction and Architectural Management, vol. 27 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 9 March 2022

G.L. Infant Cyril and J.P. Ananth

The bank is termed as an imperative part of the marketing economy. The failure or success of an institution relies on the ability of industries to compute the credit risk. The…

Abstract

Purpose

The bank is termed as an imperative part of the marketing economy. The failure or success of an institution relies on the ability of industries to compute the credit risk. The loan eligibility prediction model utilizes analysis method that adapts past and current information of credit user to make prediction. However, precise loan prediction with risk and assessment analysis is a major challenge in loan eligibility prediction.

Design/methodology/approach

This aim of the research technique is to present a new method, namely Social Border Collie Optimization (SBCO)-based deep neuro fuzzy network for loan eligibility prediction. In this method, box cox transformation is employed on input loan data to create the data apt for further processing. The transformed data utilize the wrapper-based feature selection to choose suitable features to boost the performance of loan eligibility calculation. Once the features are chosen, the naive Bayes (NB) is adapted for feature fusion. In NB training, the classifier builds probability index table with the help of input data features and groups values. Here, the testing of NB classifier is done using posterior probability ratio considering conditional probability of normalization constant with class evidence. Finally, the loan eligibility prediction is achieved by deep neuro fuzzy network, which is trained with designed SBCO. Here, the SBCO is devised by combining the social ski driver (SSD) algorithm and Border Collie Optimization (BCO) to produce the most precise result.

Findings

The analysis is achieved by accuracy, sensitivity and specificity parameter by. The designed method performs with the highest accuracy of 95%, sensitivity and specificity of 95.4 and 97.3%, when compared to the existing methods, such as fuzzy neural network (Fuzzy NN), multiple partial least squares regression model (Multi_PLS), instance-based entropy fuzzy support vector machine (IEFSVM), deep recurrent neural network (Deep RNN), whale social optimization algorithm-based deep RNN (WSOA-based Deep RNN).

Originality/value

This paper devises SBCO-based deep neuro fuzzy network for predicting loan eligibility. Here, the deep neuro fuzzy network is trained with proposed SBCO, which is devised by combining the SSD and BCO to produce most precise result for loan eligibility prediction.

Details

Kybernetes, vol. 52 no. 8
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 1 June 2010

Pratesh Jayaswal, S.N. Verma and A.K. Wadhwani

The objective of this paper is to provide a brief review of recent developments in the area of applications of ANN, Fuzzy Logic, and Wavelet Transform in fault diagnosis. The…

1759

Abstract

Purpose

The objective of this paper is to provide a brief review of recent developments in the area of applications of ANN, Fuzzy Logic, and Wavelet Transform in fault diagnosis. The purpose of this work is to provide an approach for maintenance engineers for online fault diagnosis through the development of a machine condition‐monitoring system.

Design/methodology/approach

A detailed review of previous work carried out by several researchers and maintenance engineers in the area of machine‐fault signature‐analysis is performed. A hybrid expert system is developed using ANN, Fuzzy Logic and Wavelet Transform. A Knowledge Base (KB) is created with the help of fuzzy membership function. The triangular membership function is used for the generation of the knowledge base. The fuzzy‐BP approach is used successfully by using LR‐type fuzzy numbers of wavelet‐packet decomposition features.

Findings

The development of a hybrid system, with the use of LR‐type fuzzy numbers, ANN, Wavelets decomposition, and fuzzy logic is found. Results show that this approach can successfully diagnose the bearing condition and that accuracy is good compared with conventionally EBPNN‐based fault diagnosis.

Practical implications

The work presents a laboratory investigation carried out through an experimental set‐up for the study of mechanical faults, mainly related to the rolling element bearings.

Originality/value

The main contribution of the work has been the development of an expert system, which identifies the fault accurately online. The approaches can now be extended to the development of a fault diagnostics system for other mechanical faults such as gear fault, coupling fault, misalignment, looseness, and unbalance, etc.

Details

Journal of Quality in Maintenance Engineering, vol. 16 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 24 September 2019

Farman Afzal, Shao Yunfei, Mubasher Nazir and Saad Mahmood Bhatti

In the past decades, artificial intelligence (AI)-based hybrid methods have been increasingly applied in construction risk management practices. The purpose of this paper is to…

6922

Abstract

Purpose

In the past decades, artificial intelligence (AI)-based hybrid methods have been increasingly applied in construction risk management practices. The purpose of this paper is to review and compile the current AI methods used for cost-risk assessment in the construction management domain in order to capture complexity and risk interdependencies under high uncertainty.

Design/methodology/approach

This paper makes a content analysis, based on a comprehensive literature review of articles published in high-quality journals from the years 2008 to 2018. Fuzzy hybrid methods, such as fuzzy-analytical network processing, fuzzy-artificial neural network and fuzzy-simulation, have been widely used and dominated in the literature due to their ability to measure the complexity and uncertainty of the system.

Findings

The findings of this review article suggest that due to the limitation of subjective risk data and complex computation, the applications of these AI methods are limited in order to address cost overrun issues under high uncertainty. It is suggested that a hybrid approach of fuzzy logic and extended form of Bayesian belief network (BBN) can be applied in cost-risk assessment to better capture complexity-risk interdependencies under uncertainty.

Research limitations/implications

This study only focuses on the subjective risk assessment methods applied in construction management to overcome cost overrun problem. Therefore, future research can be extended to interpret the input data required to deal with uncertainties, rather than relying solely on subjective judgments in risk assessment analysis.

Practical implications

These results may assist in the management of cost overrun while addressing complexity and uncertainty to avoid chaos in a project. In addition, project managers, experts and practitioners should address the interrelationship between key complexity and risk factors in order to plan risk impact on project cost. The proposed hybrid method of fuzzy logic and BBN can better support the management implications in recent construction risk management practice.

Originality/value

This study addresses the applications of AI-based methods in complex construction projects. A proposed hybrid approach could better address the complexity-risk interdependencies which increase cost uncertainty in project.

Details

International Journal of Managing Projects in Business, vol. 14 no. 2
Type: Research Article
ISSN: 1753-8378

Keywords

Article
Publication date: 13 February 2017

Citra Ongkowijoyo and Hemanta Doloi

The purpose of this paper is to develop a novel risk analysis method named fuzzy critical risk analysis (FCRA) for assessing the infrastructure risks from a risk-community network

1280

Abstract

Purpose

The purpose of this paper is to develop a novel risk analysis method named fuzzy critical risk analysis (FCRA) for assessing the infrastructure risks from a risk-community network perspective. The basis of this new FCRA method is the integration of existing risk magnitude analysis with the novel risk impact propagation analysis performed in specific infrastructure systems to assess the criticality of risk within specific social-infrastructure interrelated network boundary.

Design/methodology/approach

The FCRA uses a number of scientific methods such as failure mode effect and criticality analysis (FMECA), social network analysis (SNA) and fuzzy-set theory to facilitate the building of risk evaluation associated with the infrastructure and the community. The proposed FCRA approach has been developed by integrating the fuzzy-based social network analysis (FSNA) method with conventional fuzzy FMECA method to analyse the most critical risk based on risk decision factors and risk impact propagation generated by various stakeholder perceptions.

Findings

The application of FSNA is considered to be highly relevant for investigating the risk impact propagation mechanism based on various stakeholder perceptions within the infrastructure risk interrelation and community networks. Although conventional FMECA methods have the potential for resulting in a reasonable risk ranking based on its magnitude value within the traditional risk assessment method, the lack of considering the domino effect of the infrastructure risk impact, the various degrees of community dependencies and the uncertainty of various stakeholder perceptions made such methods grossly ineffective in the decision-making of risk prevention (and mitigation) and resilience context.

Research limitations/implications

The validation of the model is currently based on a hypothetical case which in the future should be applied empirically based on a real case study.

Practical implications

Effective functioning of the infrastructure systems for seamless operation of the society is highly crucial. Yet, extreme events resulted in failure scenarios often undermine the efficient operations and consequently affect the community at multiple levels. Current risk analysis methodologies lack to address issues related to diverse impacts on communities and propagation of risks impact within the infrastructure system based on multi-stakeholders’ perspectives. The FCRA developed in this research has been validated in a hypothetical case of infrastructure context. The proposed method will potentially assist the decision-making regarding risk governance, managing the vulnerability of the infrastructure and increasing both the infrastructure and community resilience.

Social implications

The new approach developed in this research addresses several infrastructure risks assessment challenges by taking into consideration of not only the risk events associated with the infrastructure systems but also the dependencies of various type communities and cascading effect of risks within the specific risk-community networks. Such a risk-community network analysis provides a good basis for community-based risk management in the context of mitigation of disaster risks and building better community resilient.

Originality/value

The novelty of proposed FCRA method is realized due to its ability for improving the estimation accuracy and decision-making based on multi-stakeholder perceptions. The process of assessment of the most critical risks in the hypothetical case project demonstrated an eminent performance of FCRA method as compared to the results in conventional risk analysis method. This research contributes to the literature in several ways. First, based on a comprehensive literature review, this work established a benchmark for development of a new risk analysis method within the infrastructure and community networks. Second, this study validates the effectiveness of the model by integrating fuzzy-based FMECA with FSNA. The approach is considered useful from a methodological advancement when prioritizing similar or competing risk criticality values.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 8 no. 1
Type: Research Article
ISSN: 1759-5908

Keywords

1 – 10 of over 14000