Search results

1 – 10 of over 4000
Article
Publication date: 17 October 2023

Yongliang Wang and Nana Liu

Multi-well hydrofracturing is an important technology to create new fractures and expand existing fractures to increase reservoir permeability. The propagation morphology of the…

Abstract

Purpose

Multi-well hydrofracturing is an important technology to create new fractures and expand existing fractures to increase reservoir permeability. The propagation morphology of the fracture network is affected by the disturbance between the fractures initiation sequences and spacings between adjacent wells. However, it remains unclear how well spacing and initiation sequences lead to fracture propagation, deflection and connection.

Design/methodology/approach

In this study, the thermal-hydro-mechanical coupling effect in the hydrofracturing process was considered, to establish a finite element-discrete element model of multistage hydrofracturing in a horizontal well. Using typical cases, the unstable propagation of hydraulic fractures in multiple horizontal wells was investigated under varying well spacing and initiation sequences. Combined with the shear stress shadow caused by in situ stress disturbed by fracture tip propagation, the quantitative indexes of fracture propagation such as length, volume, displacement vector, deflection and unstable propagation behavior of the hydrofracturing fracture network were analyzed.

Findings

The results show that the shear stress disturbance caused by multiple hydraulic fractures is a significant factor in multi-well hydrofracturing. Reducing the spacing between multiple wells increases the stress shadow area and aggravates the mutual disturbance and deflection between the fractures. The quantitative analysis results show that a decrease of well spacing reduces the total length of hydraulic fractures but increases the total volume of the fracture; compared with sequential and simultaneous fracturing, alternate fracturing can effectively reduce stress shadow area, alleviate fracture disturbance and generate larger fracture propagation length and volume.

Originality/value

The numerical models and results of the unstable propagation and stress evolution of the hydraulic fracture network under thermal-hydro-mechanical coupling obtained in this study can provide useful guidance for the evaluation and design of rock mass fracture networks in deep unconventional oil and gas reservoirs.

Article
Publication date: 1 September 2023

Yongliang Wang, Liangchun Li and Yang Ju

Multi-well hydrofracturing is a key technology in engineering, and the evaluation, control and optimization of the fracturing network determine the recovery rate of unconventional…

Abstract

Purpose

Multi-well hydrofracturing is a key technology in engineering, and the evaluation, control and optimization of the fracturing network determine the recovery rate of unconventional oil and gas production. In engineering terms, altering well spacing and perforation initiation sequences changes fracture propagation behavior. Fracture propagation can result in fracture-to-fracture and well-to-well interactions. This may be attributed to the interference between fractures caused by squeezing of the reservoir strata. Meanwhile, the stratal movement caused by the propagation of the fractures may lead to either the secondary fracturing of wells with primary fractures or perforation to begin fracturing. Besides, the stratal compression and squeeze of multi-well hydrofracturing will cause earthquakes; the fracture size is different owing to the different fracturing scenarios, and the occurrence of induced microseismic events is still unknown; microseismic events also affect fracture orientation and deflection. If the mechanism of the above mechanical behavior cannot be clarified, optimizing the fracture network and reduce the induced microseismic disaster becomes difficult.

Design/methodology/approach

In this study, combined finite element-discrete element models were used to simulate the multi-well hydrofracturing. Numerical cases compared the fracture network, dynamic stratal movement and microseismic events at 50, 75 and 100 m well spacings, respectively, and varying initiation sequence of multiple horizontal wells.

Findings

From the results, fracture propagation in multi-well hydrofracturing may simulate the propagation and deflection of adjacent fractures and induce fracture-to-fracture and well-to-well interactions. As the well spacing increases, the effect of fracturing-induced stratal movement and squeezing deformation decrease. In alternate fracturing, starting from a well located in the middle can effectively reduce the influence of stratal movement on fracturing, and the fracturing scenario with cross-perforation can minimize the influence of stratal movement. The stratal movement between multiple wells is positively correlated to microseismic events, which behaviors can be effectively weakened by reducing the strata movement.

Originality/value

The fracture network, thermal-hydro-mechanical coupling, fracturing-induced stratal movement and microseismic events were analyzed. This study analyzed the intersection and propagation behavior of fractures in multi-well hydrofracturing, which can be used to evaluate and study the mechanism of hydrofracturing fracture network propagation in multiple horizontal wells and conduct fracture optimization research to form an optimized hydrofracturing scheme by reasonably arranging the spacing between wells and initiation sequences of perforation clusters.

Article
Publication date: 27 January 2023

Yongliang Wang and Nana Liu

The unstable dynamic propagation of multistage hydrofracturing fractures leads to uneven development of the fracture network and research on the mechanism controlling this…

Abstract

Purpose

The unstable dynamic propagation of multistage hydrofracturing fractures leads to uneven development of the fracture network and research on the mechanism controlling this phenomenon indicates that the stress shadow effects around the fractures are the main mechanism causing this behaviour. Further studies and simulations of the stress shadow effects are necessary to understand the controlling mechanism and evaluate the fracturing effect.

Design/methodology/approach

In the process of stress-dependent unstable dynamic propagation of fractures, there are both continuous stress fields and discontinuous fractures; therefore, in order to study the stress-dependent unstable dynamic propagation of multistage fracture networks, a series of continuum-discontinuum numerical methods and models are reviewed, including the well-developed extended finite element method, displacement discontinuity method, boundary element method and finite element-discrete element method.

Findings

The superposition of the surrounding stress field during fracture propagation causes different degrees of stress shadow effects between fractures and the main controlling factors of stress shadow effects are fracture initiation sequence, perforation cluster spacing and well spacing. The perforation cluster spacing varies with the initiation sequence, resulting in different stress shadow effects between fractures; for example, the smaller the perforation cluster spacing and well spacing are, the stronger the stress shadow effects are and the more seriously the fracture propagation inhibition arises. Moreover, as the spacing of perforation clusters and well spacing increases, the stress shadow effects decrease and the fracture propagation follows an almost straight pattern. In addition, the computed results of the dynamic distribution of stress-dependent unstable dynamic propagation of fractures under different stress fields are summarised.

Originality/value

A state-of-art review of stress shadow effects and continuum-discontinuum methods for stress-dependent unstable dynamic propagation of multiple hydraulic fractures are well summarized and analysed. This paper can provide a reference for those engaged in the research of unstable dynamic propagation of multiple hydraulic structures and have a comprehensive grasp of the research in this field.

Details

Engineering Computations, vol. 40 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 July 2023

Yongliang Wang

The purpose of this study is to investigate the unstable propagation of parallel hydraulic fractures induced by interferences of adjacent perforation clusters and thermal…

Abstract

Purpose

The purpose of this study is to investigate the unstable propagation of parallel hydraulic fractures induced by interferences of adjacent perforation clusters and thermal diffusion. Fracture propagation in the process of multistage fracturing of a rock mass is deflected owing to various factors. Hydrofracturing of rock masses in deep tight reservoirs involves thermal diffusion, fluid flow and deformation of rock between the rock matrix and fluid in pores and fractures.

Design/methodology/approach

To study the unstable propagation behaviours of three-dimensional (3D) parallel hydraulic fractures induced by the interferences of adjacent perforation clusters and thermal diffusion, a 3D engineering-scale numerical model is established under different fracturing scenarios (sequential, simultaneous and alternate fracturing) and different perforation cluster spacings while considering the thermal-hydro-mechanical coupling effect. Stress disturbance region caused by fracture propagation in a deep tight rock mass is superimposed and overlaid with multiple fractures, resulting in a stress shadow effect and fracture deflection.

Findings

The results show that the size of the stress shadow areas and the interaction between fractures increase with decreasing multiple perforation cluster spacing in horizontal wells. Alternate fracturing can produce more fracture areas and improve the fracturing effect compared with those of sequential and simultaneous fracturing. The larger the temperature gradient between the fracturing fluid and rock matrix, the stronger the thermal diffusion effect, and the effect of thermal diffusion on the fracture propagation is significant.

Originality/value

This study focuses on the behaviours of the unstable dynamic propagation of 3D parallel hydraulic fractures induced by the interferences of adjacent perforation clusters and thermal diffusion. Further, the temperature field affects the fracture deflection requires could be investigated from the mechanisms; this paper is to study the unstable propagation of fractures in single horizontal well, which can provide a basis for fracture propagation and stress field disturbance in multiple horizontal wells.

Details

Engineering Computations, vol. 40 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Abstract

Details

Transportation and Traffic Theory in the 21st Century
Type: Book
ISBN: 978-0-080-43926-6

Article
Publication date: 9 June 2022

Jinliang Liu and Fangpu Yan

A numerical simulation of the test beam was carried out with Abaqus and compared with test data to ensure that the modeling method is accurate. An analysis of the effects of the…

Abstract

Purpose

A numerical simulation of the test beam was carried out with Abaqus and compared with test data to ensure that the modeling method is accurate. An analysis of the effects of the angle between the U-hoop and horizontal direction, the pre-crack height, the pre-crack spacing, and the strength of the geopolymer adhesive on the cracking load and ultimate load of the reinforced beam is presented.

Design/methodology/approach

Load tests and finite element simulations were conducted on carbon fiber reinforced polymer-reinforced concrete beams bonded with geopolymer adhesive. The bond-slip effect of geopolymer adhesive was taken into account in the model. The flexural performances, the flexural load capacities, the deformation capacities, and the damage characteristics of the beams were observed, and the numerical simulation results were in good agreement with the experimental results. An analysis of parametric sensitivity was performed using finite element simulation to investigate the effects of different angles between U-hoop and horizontal direction, pre-crack heights, pre-crack spacing, and strength of geopolymer adhesive on cracking load and ultimate load.

Findings

Under the same conditions, the higher the height of the pre-crack, the lower the bearing capacity; increasing the pre-crack spacing can delay cracking, but reduce ultimate load. By increasing the strength of the geopolymer adhesive, the flexural resistance of the beam is improved, and crack development is also delayed; the angle between the u-hoop and horizontal direction does not affect the cracking of reinforced beams; a horizontal u-hoop has a better effect than an oblique u-hoop, and 60° is the ideal angle between the u-hoop and horizontal direction for better reinforcement.

Originality/value

According to the experimental study in this paper, Abaqus was used to simulate the strength of different angles between U-hoop and horizontal direction, pre-crack heights, pre-crack spacings, and geopolymer adhesives, and the angles' effects on the cracking load and load carrying capacity of test beams were discussed. Since no actual tests are required, the method is economical. This paper offers data support for the promotion and application of environmentally friendly reinforcement technology, contributes to environmental protection, and develops a new method for reinforcing reinforced concrete beams and a new concept for finite element simulations.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 22 July 2019

Md. Hazrat Ali, Shaheidula Batai and Dastan Sarbassov

This study highlights the demand for low-cost and high accuracy products through the design and development of new 3D printing technologies. Besides, significant progress has been…

2090

Abstract

Purpose

This study highlights the demand for low-cost and high accuracy products through the design and development of new 3D printing technologies. Besides, significant progress has been made in this field. A comparative study helps to understand the latest development in materials and future prospect of this technology.

Design/methodology/approach

Nevertheless, a large amount of progress still remains to be made. While some of the works have focused on the performances of the materials, the rest have focused on the development of new methods and techniques in additive manufacturing.

Findings

This paper critically evaluates the current 3D printing technologies, including the development and optimizations made to the printing methods, as well as the printed objects. Meanwhile, previous developments in this area and contributions to the modern trend in manufacturing technology are summarized briefly.

Originality/value

The paper can be summarized in three sections. Firstly, the existing printing methods along with the frequently used printing materials, as well as the processing parameters, and the factors which influence the quality and mechanical performances of the printed objects are discussed. Secondly, the optimization techniques, such as topology, shape, structure and mechanical property, are described. Thirdly, the latest development and applications of additive manufacturing are depicted, and the scope of future research in the relevant area is put forward.

Details

Rapid Prototyping Journal, vol. 25 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 April 2020

Laima Muraliene and Daiva Mikucioniene

Air permeability has a valuable role in comfort parameters. It is known that air permeability of elastomeric yarns is firmly low. Despite that, usage of elastomeric inlay-yarns is…

Abstract

Purpose

Air permeability has a valuable role in comfort parameters. It is known that air permeability of elastomeric yarns is firmly low. Despite that, usage of elastomeric inlay-yarns is the most common and the most effective way to generate compression for knitted textile. This study aims to investigate the influence of elastomeric inlay-yarn linear density, insertion density and elongation of the sample to the air permeability of compression knitted materials.

Design/methodology/approach

Two different types of knitting patterns were investigated: rib 1 × 1 pattern with different elastomeric inlay-yarn linear density (four variants) and insertion density (without inlay yarn and with inlay-yarns inserted into every single, second or fourth course) and combined laid-in jacquard pattern. The air permeability test for these structures was performed without any deformation and at 10 and 20 per cent fixed transverse elongation.

Findings

According to the investigation, insertion density of inlay-yarns has a huge impact on air permeability; however, air permeability of knitted material is not linearly proportional to the total amount of inlay-yarns. Also, it was found that air permeability increases by increasing elongation, regardless of knitting pattern and total amount of elastomeric inlay-yarn in the knitted structure. Alteration of the loop geometry at natural state and 20 per cent fixed elongation was established, and the increase of air permeability at fixed elongation may be dependent on changes of knitted material porosity.

Originality/value

According to the obtained results, recommendations to perform air permeability measurement at least with minimal specific wear elongation are presented.

Details

International Journal of Clothing Science and Technology, vol. 32 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Abstract

Details

SDG5 – Gender Equality and Empowerment of Women and Girls
Type: Book
ISBN: 978-1-78973-521-5

Article
Publication date: 22 September 2023

Chen Chen, Liang Zhang, Xi Huang and Xiao Lu

The purpose of this study is to delve into the mechanism of Si3N4 nanowires (NWs) in Sn-based solder, thereby furnishing a theoretical foundation for the expeditious design and…

Abstract

Purpose

The purpose of this study is to delve into the mechanism of Si3N4 nanowires (NWs) in Sn-based solder, thereby furnishing a theoretical foundation for the expeditious design and practical implementation of innovative lead-free solder materials in the electronic packaging industry.

Design/methodology/approach

This study investigates the effect of adding Si3N4 NWs to Sn58Bi solder in various mass fractions (0, 0.1, 0.2, 0.4, 0.6 and 0.8 Wt.%) for modifying the solder and joining the Cu substrate. Meanwhile, the melting characteristics and wettability of solder, as well as the microstructure, interfacial intermetallic compound (IMC) and mechanical properties of joint were evaluated.

Findings

The crystal plane spacing and lattice constant of Sn and Bi phase increase slightly. A minor variation in the Sn58Bi solder melting point was caused, while it does not impact its functionality. An appropriate Si3N4 NWs content (0.2∼0.4 Wt.%) significantly improves its wettability, and modifies the microstructure and interfacial IMC layer. The shear strength increases by up to 10.74% when adding 0.4 Wt.% Si3N4 NWs, and the failure mode observed is brittle fracture mainly. However, excessive Si3N4 will cause aggregation at the junction between the solder matrix and IMC layer, this will be detrimental to the joint.

Originality/value

The Si3N4 NWs were first used for the modification of lead-free solder materials. The relative properties of composite solder and joints were evaluated from different aspects, and the optimal ratio was obtained.

Details

Soldering & Surface Mount Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of over 4000