Search results

1 – 10 of over 1000
Article
Publication date: 7 August 2023

Jiayuan Yan, Xiaoliang Zhang and Yanming Wang

As a high-performance engineering plastic, polyimide (PI) is widely used in the aerospace, electronics and automotive industries. This paper aims to review the latest progress in…

Abstract

Purpose

As a high-performance engineering plastic, polyimide (PI) is widely used in the aerospace, electronics and automotive industries. This paper aims to review the latest progress in the tribological properties of PI-based composites, especially the effects of nanofiller selection, composite structure design and material modification on the tribological and mechanical properties of PI-matrix composites.

Design/methodology/approach

The preparation technology of PI and its composites is introduced and the effects of carbon nanotubes (CNTs), carbon fibers (CFs), graphene and its derivatives on the mechanical and tribological properties of PI-based composites are discussed. The effects of different nanofillers on tensile strength, tensile modulus, coefficient of friction and wear rate of PI-based composites are compared.

Findings

CNTs can serve as the strengthening and lubricating phase of PI, whereas CFs can significantly enhance the mechanical properties of the matrix. Two-dimensional graphene and its derivatives have a high modulus of elasticity and self-lubricating properties, making them ideal nanofillers to improve the lubrication performance of PI. In addition, copolymerization can improve the fracture toughness and impact resistance of PI, thereby enhancing its mechanical properties.

Originality/value

The mechanical and tribological properties of PI matrix composites vary depending on the nanofiller. Compared with nanofibers and nanoparticles, layered reinforcements can better improve the friction properties of PI composites. The synergistic effect of different composite fillers will become an important research system in the field of tribology in the future.

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 April 2018

Pengfei Du, G.X. Chen, Shiyuan Song, Jiang Wu, Kechen Gu, Dachuan Zhu and Jin Li

The tribological properties of muscovite and its thermal-treated products as lubricant additives in lithium grease were investigated. The effect of thermal temperature on the…

Abstract

Purpose

The tribological properties of muscovite and its thermal-treated products as lubricant additives in lithium grease were investigated. The effect of thermal temperature on the crystal structure and tribological properties of muscovite was studied. This study aims to explore the tribological mechanism of muscovite and optimize a proper thermal activation temperature, thus further improving the tribological properties.

Design/methodology/approach

The crystal structure of muscovite samples was characterized by SEM, TG-DSC, XRD and FTIR. The tribological properties of grease samples were investigated using a four-ball tribotester and the worn surface was analyzed by SEM and EDS.

Findings

The excellent tribological properties of muscovite can be ascribed to the layer structure and lubricant film formed on the worn surface. Thermal temperature at 500-600°C increases the surface activity and oxygen releasing capability, and thus favors the formation of lubricant film and accordingly further improves the tribological properties. However, the layer structure is destroyed and hard phases such as alumina and amorphous appear after thermal temperature activated beyond 1000°C, as it results in the aggravation of friction and wear.

Originality/value

To the authors’ knowledge, it is the first to study the effect of thermal temperature on the crystal structure and tribological properties of muscovite. The tribological mechanism of muscovite particle and its thermal-treated products was disclosed.

Details

Industrial Lubrication and Tribology, vol. 70 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 October 2018

Guotao Zhang, Yanguo Yin, Ming Xu and Congmin Li

This paper aims to obtain high mechanical strength and good self-lubricating property of iron-based powder metallurgy materials. A new type of bilayer material with dense…

Abstract

Purpose

This paper aims to obtain high mechanical strength and good self-lubricating property of iron-based powder metallurgy materials. A new type of bilayer material with dense substrate and porous surface was proposed in this paper to obtain high strength and good self-lubricating property.

Design/methodology/approach

The materials were prepared by powder metallurgy. Their friction and wear properties were investigated with an end-face tribo-tester. Energy dispersive spectrometer, X-ray diffraction and the 3D laser scanning technologies were used to characterise the tribological properties of materials. The tribological and bearing mechanisms of the monolayer and bilayer materials were compared.

Findings

The results show that adding proper TiH2 can effectively improve the porosity and hardness. With the TiH2 content increased from 0 to 4 per cent, the average friction coefficients increase slowly, and the wearability decreases first and then increases. When containing 3.5 per cent TiH2, high strength and good self-lubrication characteristics are obtained. Besides, the tribological properties of monolayer materials are better than those of bilayer materials when the load is between 980 and 1,470 N, while the opposite result is obtained under the load varied from 1,470 to 2,450 N. In the bilayer material, the porous oil surface can lubricate well and the dense substrate can improve the mechanical property. So, its comprehensive tribological and mechanical properties are better than those of monolayer material.

Originality/value

The friction and wear properties of a new type bilayer materials were investigated. And their tribological mechanisms were proposed. This work can provide a theoretical reference for developing high-performance iron-based oil materials under boundary lubrication.

Details

Industrial Lubrication and Tribology, vol. 70 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 October 2018

Guotao Zhang, Yanguo Yin, Ting Xie, Dan Li, Ming Xu and Congmin Li

This paper aims to obtain high mechanical and good tribological properties of epoxy resin-based coatings under dry friction conditions.

Abstract

Purpose

This paper aims to obtain high mechanical and good tribological properties of epoxy resin-based coatings under dry friction conditions.

Design/methodology/approach

Bonded solid lubricant coatings containing Kevlar fibres were prepared by a spraying method. The friction and wear properties of the coatings were experimentally investigated with a face-to-face tribometre under dry friction conditions. Scanning electron microscopy, energy dispersive X-ray spectroscopy and 3D laser scanning technologies were used to characterise the tribological properties. The action mechanism of the Kevlar fibres on a solid lubricant transfer film was also analysed.

Findings

Adding Kevlar fibres can significantly improve the wear resistance of the coatings. When the Kevlar fibre content increases, the tribological properties of the coatings improve and then worsen. Superior properties are obtained with 0.03 g of Kevlar fibres. Appropriately increasing the load or speed is beneficial to the removal of the outer epoxy resin and the formation of a lubricant film. During friction, the solid lubricants wrapped in the epoxy resin accumulate on the surface to form a transfer film that shows a good self-lubricating performance. In the later friction stage, fatigue cracks occur on the solid lubricant film but cannot connect to one another because of the high wear resistance and the entanglement of the rod-like Kevlar fibres. Thus, no large-area film falls from the matrix, thereby ensuring the long-term functioning of solid lubricant coatings.

Originality/value

Epoxy resin-based solid lubricant coatings modified by Kevlar fibres were prepared, and their friction and wear properties were investigated. Their tribological mechanisms were also proposed. This work provided a basis for the analysis of the tribological properties and design of bonded solid lubricant coatings containing Kevlar fibres.

Details

Industrial Lubrication and Tribology, vol. 70 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 March 2024

Yuchun Huang, Haishu Ma, Yubo Meng and Yazhou Mao

This paper aims to study the synergistic lubrication effects of Sn–Ag–Cu and MXene–Ti3C2 to improve the tribological properties of M50 bearing steel with microporous channels.

Abstract

Purpose

This paper aims to study the synergistic lubrication effects of Sn–Ag–Cu and MXene–Ti3C2 to improve the tribological properties of M50 bearing steel with microporous channels.

Design/methodology/approach

M50 matrix self-lubricating composites (MMSC) were designed and prepared by filling Sn–Ag–Cu and MXene–Ti3C2 in the microporous channels of M50 bearing steel. The tribology performance testing of as-prepared samples was executed with a multifunction tribometer. The optimum hole size and lubricant content, as well as self-lubricating mechanism of MMSC, were studied.

Findings

The tribological properties of MMSC are strongly dependent on the synergistic lubrication effect of MXene–Ti3C2 and Sn–Ag–Cu. When the hole size of microchannel is 1 mm and the content of MXene–Ti3C2 in mixed lubricant is 4 wt.%, MMSC shows the lowest friction coefficient and wear rate. The Sn–Ag–Cu and MXene–Ti3C2 are extruded from the microporous channels and spread to the friction interface, and a relatively complete lubricating film is formed at the friction interface. Meanwhile, the synergistic lubrication of Sn–Ag–Cu and MXene–Ti3C2 can improve the stability of the lubricating film, thus the excellent tribological property of MMSC is obtained.

Originality/value

The results help in deep understanding of the synergistic lubrication effects of Sn–Ag–Cu and MXene–Ti3C2 on the tribological properties of M50 bearing steel. This work also provides a useful reference for the tribological design of mechanical components by combining surface texture with solid lubrication.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0381/

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 April 2018

Jian Feng Li, Qin Shi, HeJun Zhu, ChenYu Huang, Shuai Zhang, Weixiang Peng and ChangSheng Li

This paper aims to clarify the size and morphology of transition metal dichalcogenides has an impact on lubrication performance of Cu-based composites. This study is intended to…

Abstract

Purpose

This paper aims to clarify the size and morphology of transition metal dichalcogenides has an impact on lubrication performance of Cu-based composites. This study is intended to show that Cu-based electrical contact materials containing Nb0.91Ti0.09Se2 have better electrical and tribological properties than those containing NbSe2. The tribological properties of Cu-based with different Ti-dopped NbSe2 content were also discussed.

Design/methodology/approach

The NbSe2 and Nb0.91Ti0.09Se2 particles were fabricated by thermal solid state reaction method. The powder metallurgy technique was used to fabricate composites with varying Nb0.91Ti0.09Se2 mass fraction. The phase composition of Cu-based composites was identified by X-ray diffraction, and the morphology of NbSe2/Nb0.91Ti0.09Se2 and the worn surface of composites were characterized by scanning electron microscopy and transmission electron microscopy. In addition, the tribological properties of composites were appraised using a ball-on-disk multi-functional tribometer. The data of friction coefficient and resistivity were analyzed and the corresponding conclusion was drawn.

Findings

In comparison with the pure copper, Cu-based composites containing Nb0.91Ti0.09Se2/NbSe2 had a lower friction coefficient, illustrating the Nb0.91Ti0.09Se2 with nano-size particles prepared in this work is a perfect choice for the fabrication of excellent electrical contact composites. Compared to composites with NbSe2, composites containing Nb0.91Ti0.09Se2 have better tribological and electrical properties.

Research limitations/implications

Because of the use of thermal solid state reaction method, the size of NbSe2 and Nb0.91Ti0.09Se2 is relatively large. Therefore, the fabrication of finer particles of Nb0.91Ti0.09Se2 is encouraged.

Originality/value

In this paper, the authors discuss the tribological and electrical properties of Cu-based composites, and the value of optimum obtained as Nb0.91Ti0.09Se2 content is 15 Wt.%.

Details

Industrial Lubrication and Tribology, vol. 70 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 November 2018

Zhe Geng, Huadong Huang, Baoshan Lu, Shaohua Wu and Gaolian Shi

This paper aims to investigate the effect of coating microstructure, mechanical and oxidation property on the tribological behaviour of low-pressure plasma spraying (LPPS…

Abstract

Purpose

This paper aims to investigate the effect of coating microstructure, mechanical and oxidation property on the tribological behaviour of low-pressure plasma spraying (LPPS) tungsten carbide/cobalt (WC-Co) coatings.

Design/methodology/approach

WC-12Co and WC-17Co coatings were deposited via the LPPS spraying method. Tribological tests on the coatings were performed using a high-temperature ball-on-disc tribometer at temperatures from room temperature (RT, approximately 25 °C) up to 800 °C in ambient air.

Findings

WC-12Co coating contained brittle phases, pores and microcracks, which led to the low hardness, and finally promoted the splat delamination and the carbide debonding during wear. WC-17Co coating had higher cobalt content which benefited the coating to contain more WC particles, less brittle phases, pores and nearly no microcracks, and resulted in the high hardness and better wear resistance. Higher cobalt content also decelerated the oxidation rate of the coating and promoted the formation of cobalt oxides and CoWO4, which were able to maintain the load-bearing capacity and improve the tribological behaviour of the coating below 650°C. Above 650°C, the increase of oxidation degree and the decrease of mechanical property deteriorated the wear resistance of coatings.

Originality/value

The LPPS WC-Co coating with higher cobalt content had better tribological properties at different temperatures. The LPPS WC-Co coatings should not be used as wear-resistant coatings above 650 °C.

Details

Industrial Lubrication and Tribology, vol. 71 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 September 2019

Hailong Zhao, Lirong Luo, Fangwei Guo, Xiaofeng Zhao and Ping Xiao

The purpose of this paper is to investigate the tribological performance of Cr3C2–NiCr–Mo–BaF2 composite sliding against a Si3N4 ball at high temperatures.

Abstract

Purpose

The purpose of this paper is to investigate the tribological performance of Cr3C2–NiCr–Mo–BaF2 composite sliding against a Si3N4 ball at high temperatures.

Design/methodology/approach

A Cr3C2–NiCr composite and a Cr3C2–NiCr–Mo–BaF2 composite were prepared using spark plasma sintering. Tribological properties of the composites were investigated using a ball-on-disk type tribotester. The relationships among the microstructure, wear mechanism and tribological performance were determined by analyzing the wear track morphologies and the glaze layer’s phase composition.

Findings

The wear rate of the Cr3C2–NiCr–Mo–BaF2 composite was approximately one order of magnitude lower than that of the Cr3C2–NiCr composite from 700°C to 900°C when sliding against a Si3N4 ball. The favorable tribological performance of the Cr3C2–NiCr–Mo–BaF2 composite at high temperatures results from the synergistic lubrication of MoOx, BaF2 and BaMoO4.

Originality/value

This paper reports a new Cr3C2–NiCr matrix self-lubricating composite with better tribological properties than Cr3C2–NiCr composite at temperatures up to 900°C through Mo and BaF2 addition.

Details

Industrial Lubrication and Tribology, vol. 72 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 August 2022

Rongrong Li, Yanguo Yin, Kaiyuan Zhang, Ruhong Song and Qi Chen

This paper aims to investigate how ball milling (BM) and load influence transfer film on counterbody and the correlation between transfer film and tribological properties of…

Abstract

Purpose

This paper aims to investigate how ball milling (BM) and load influence transfer film on counterbody and the correlation between transfer film and tribological properties of copper-based composites.

Design/methodology/approach

The copper-based mixed powders preprocessed by BM for different times were used to manufacture sintered materials. Specimens were tested by a custom pin-on-flat linear reciprocating tribometer and characterized prior and after tests by optical microscope, scanning electron microscope and energy-dispersive spectroscopy. Image J® and Taylor-hobson-6 surface roughness meter were used to quantify the coverage and thickness of the transfer film.

Findings

Main results show that an appropriate amount of BM time and applied load can contribute to the formation of the transfer film on counterbody and effectively improve the tribological properties of the copper-based material. The transfer film coverage is linearly related to the friction coefficient, thickness of transfer film and wear volume. As the transfer film coverage increases, the coefficient of friction decreases. As the thickness of the transfer film increases, the amount of wear increases.

Originality/value

This work intends to control and optimize the formation of transfer film, thereby helping improve the tribological properties of materials and providing a reference to guide the preparation of Cu-based composites with excellent tribological properties.

Details

Industrial Lubrication and Tribology, vol. 74 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 November 2023

Huimin Yang, Chunlin Ye, Yi Li and Songwei Zhang

This study aims to probe the applicability of 2-mercaptobenzothiazole (MBT) functionalized ionic liquids (ILs) as additives in lithium complex grease (LCG) by researching the…

Abstract

Purpose

This study aims to probe the applicability of 2-mercaptobenzothiazole (MBT) functionalized ionic liquids (ILs) as additives in lithium complex grease (LCG) by researching the corrosion inhibiting, rheological and tribological performances.

Design/methodology/approach

Electrochemical tests such as electrochemical impedance spectroscopy and potentiodynamic polarization curves were used on Gamry electrochemical workstation to research the corrosion inhibition properties of ILs in 1.0 M HCl corrosive solution. The rheological properties of different grease samples were tested on a rheometer. The tribological properties were investigated on SRV-V oscillating reciprocating friction and wear tester. Scanning electron microscope, X-ray spectrometer and X-ray photoelectron spectrometer were used to characterize the lubricating mechanism.

Findings

The 2-MBT functionalized ILs have excellent corrosion inhibition properties. When used as additives in LCG, they both exhibited enhancing effects on thermostability, colloid stability and structural recoverability, and furthermore, outstanding friction-reducing and antiwear properties were also obtained. Surface analysis indicated that the superior lubricating performances of 2-MBT functionalized ILs were mainly ascribed to the formation of tribochemical products on wear tracks, including organic compounds with C–O bond, Fe2O3 and FeS2.

Originality/value

The 2-MBT-based ILs synthesized in this study were multifunctional additives with excellent corrosion inhibiting and tribological properties, which would have a very broad application prospect in lubricating grease industry.

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 1000